The power of trapped ion mobility for isotope tracer experiments

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Karin Preindl, Chuqiao Chen, Supriya Murthy, Florian Gruber, Christian Freystätter, Thomas Weichhart, Thomas Stimpfl, Birgit Reiter, Arvand Haschemi, Gunda Koellensperger
{"title":"The power of trapped ion mobility for isotope tracer experiments","authors":"Karin Preindl, Chuqiao Chen, Supriya Murthy, Florian Gruber, Christian Freystätter, Thomas Weichhart, Thomas Stimpfl, Birgit Reiter, Arvand Haschemi, Gunda Koellensperger","doi":"10.1016/j.aca.2025.344005","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Isotope tracing experiments in cellular metabolomics are challenged by the multiple isomers and in-source fragments, which need to be considered to obtain unbiased isotopologue ratio measurements. Thus, both, selectivity and sensitivity are key requirements for customized workflows. Trapped ion mobility spectrometry (TIMS) introduces an additional separation dimension to mass spectrometry, separating otherwise co-eluting isomers by measuring the ion mobility of a molecule<strong>.</strong> This study shows for the first time, the potential of this MS platform for accurate isotopologue assessment as showcased in isotope tracer experiments using mammalian cells.<h3>Results</h3>The validation exercise focused on spectral accuracy, precision, and metabolite detection capabilities and comprised independent measurements on an orbitrap-based platform. Hydrophilic interaction chromatography, in combination with TIMS-TOF-MS delivered excellent results, with a minimum trueness bias and excellent precision (CV%) between 0.3% and 6.4%. The ion mobility separation allowed for differentiation of the otherwise co-eluting isomers fructose-6-phosphate (F6P) and glucose-1-phosphate (G1P). Overall, isotopologue distributions were in good agreement upon crossvalidation with the orbitrap platform.Finally, a proof-of-concept tracer study addressed the activity of the glycolysis and the pentose phosphate pathway (PPP) in resting and endotoxin activated macrophages. We confirmed an activation of glycolysis and PPP in LPS activated macrophages, but found a potentially reduced relative contribution of glucose-6-phosphate (G6P) to increased F6P pools. Our findings imply that TIMS is a powerful technology for the reliable measurements of isotope distribution analysis in metabolic tracing experiments. <strong>Significance</strong>: By implementation of ion mobility, it is now possible to generate distinct isotopologue patterns for G1P and F6P in isotope tracer experiments. F6P plays a crucial role in glycolysis and PPP, highlighting the importance of precise analytical measurements. This is particularly true for metabolic studies in immunology and cancer research.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"75 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.344005","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Isotope tracing experiments in cellular metabolomics are challenged by the multiple isomers and in-source fragments, which need to be considered to obtain unbiased isotopologue ratio measurements. Thus, both, selectivity and sensitivity are key requirements for customized workflows. Trapped ion mobility spectrometry (TIMS) introduces an additional separation dimension to mass spectrometry, separating otherwise co-eluting isomers by measuring the ion mobility of a molecule. This study shows for the first time, the potential of this MS platform for accurate isotopologue assessment as showcased in isotope tracer experiments using mammalian cells.

Results

The validation exercise focused on spectral accuracy, precision, and metabolite detection capabilities and comprised independent measurements on an orbitrap-based platform. Hydrophilic interaction chromatography, in combination with TIMS-TOF-MS delivered excellent results, with a minimum trueness bias and excellent precision (CV%) between 0.3% and 6.4%. The ion mobility separation allowed for differentiation of the otherwise co-eluting isomers fructose-6-phosphate (F6P) and glucose-1-phosphate (G1P). Overall, isotopologue distributions were in good agreement upon crossvalidation with the orbitrap platform.Finally, a proof-of-concept tracer study addressed the activity of the glycolysis and the pentose phosphate pathway (PPP) in resting and endotoxin activated macrophages. We confirmed an activation of glycolysis and PPP in LPS activated macrophages, but found a potentially reduced relative contribution of glucose-6-phosphate (G6P) to increased F6P pools. Our findings imply that TIMS is a powerful technology for the reliable measurements of isotope distribution analysis in metabolic tracing experiments. Significance: By implementation of ion mobility, it is now possible to generate distinct isotopologue patterns for G1P and F6P in isotope tracer experiments. F6P plays a crucial role in glycolysis and PPP, highlighting the importance of precise analytical measurements. This is particularly true for metabolic studies in immunology and cancer research.

Abstract Image

诱捕离子迁移率在同位素示踪实验中的威力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信