Min Duan, Pan Gao, Yi-Zhou Zhang, Yu-Long Hu, Lei Zhou, Zhong-Chen Xu, Hou-Yuan Qiu, Xiao-Han Tong, Rui-Jin Ji, Xin-Lin Lei, Hao Yin, Cun-Lan Guo, Ying Zhang
{"title":"TOPO-seq reveals DNA topology-induced off-target activity by Cas9 and base editors","authors":"Min Duan, Pan Gao, Yi-Zhou Zhang, Yu-Long Hu, Lei Zhou, Zhong-Chen Xu, Hou-Yuan Qiu, Xiao-Han Tong, Rui-Jin Ji, Xin-Lin Lei, Hao Yin, Cun-Lan Guo, Ying Zhang","doi":"10.1038/s41589-025-01867-7","DOIUrl":null,"url":null,"abstract":"<p>With the increasing use of CRISPR–Cas9, detecting off-target events is essential for safety. Current methods primarily focus on guide RNA (gRNA) sequence mismatches, often overlooking the impact of DNA topology in regulating off-target activity. Here we present TOPO-seq, a high-throughput and sensitive method that identifies genome-wide off-target effects of Cas9 and base editors while accounting for DNA topology. TOPO-seq revealed that topology-induced off-target sites frequently harbor higher mismatches than the relaxed DNA sequence, with over 50% of off-target sites containing six mismatches, which are usually overlooked using previous methods. Applying TOPO-seq to three therapeutic gRNAs in hematopoietic stem cells identified 47 bona fide off-target loci, six of which are specifically induced by DNA topology. These findings highlight DNA topology as a regulator of off-target editing rates, establish TOPO-seq as a robust method for capturing DNA topology-induced off-target events and underscore its importance in off-target detection for developing safe genome-editing therapies.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"106 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01867-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing use of CRISPR–Cas9, detecting off-target events is essential for safety. Current methods primarily focus on guide RNA (gRNA) sequence mismatches, often overlooking the impact of DNA topology in regulating off-target activity. Here we present TOPO-seq, a high-throughput and sensitive method that identifies genome-wide off-target effects of Cas9 and base editors while accounting for DNA topology. TOPO-seq revealed that topology-induced off-target sites frequently harbor higher mismatches than the relaxed DNA sequence, with over 50% of off-target sites containing six mismatches, which are usually overlooked using previous methods. Applying TOPO-seq to three therapeutic gRNAs in hematopoietic stem cells identified 47 bona fide off-target loci, six of which are specifically induced by DNA topology. These findings highlight DNA topology as a regulator of off-target editing rates, establish TOPO-seq as a robust method for capturing DNA topology-induced off-target events and underscore its importance in off-target detection for developing safe genome-editing therapies.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.