Tundra Vegetation Community Type, Not Microclimate, Controls Asynchrony of Above- and Below-Ground Phenology

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Elise C. Gallois, Isla H. Myers-Smith, Colleen M. Iversen, Verity G. Salmon, Laura L. Turner, Ruby An, Sarah C. Elmendorf, Courtney G. Collins, Madelaine J. R. Anderson, Amanda Young, Lisa Pilkinton, Gesche Blume-Werry, Maude Grenier, Geerte Fälthammar-de Jong, Inge H. J. Althuizen, Casper T. Christiansen, Simone I. Lang, Cassandra Elphinstone, Greg H. R. Henry, Nicola Rammell, Michelle C. Mack, Craig See, Christian Rixen, Robert D. Hollister
{"title":"Tundra Vegetation Community Type, Not Microclimate, Controls Asynchrony of Above- and Below-Ground Phenology","authors":"Elise C. Gallois,&nbsp;Isla H. Myers-Smith,&nbsp;Colleen M. Iversen,&nbsp;Verity G. Salmon,&nbsp;Laura L. Turner,&nbsp;Ruby An,&nbsp;Sarah C. Elmendorf,&nbsp;Courtney G. Collins,&nbsp;Madelaine J. R. Anderson,&nbsp;Amanda Young,&nbsp;Lisa Pilkinton,&nbsp;Gesche Blume-Werry,&nbsp;Maude Grenier,&nbsp;Geerte Fälthammar-de Jong,&nbsp;Inge H. J. Althuizen,&nbsp;Casper T. Christiansen,&nbsp;Simone I. Lang,&nbsp;Cassandra Elphinstone,&nbsp;Greg H. R. Henry,&nbsp;Nicola Rammell,&nbsp;Michelle C. Mack,&nbsp;Craig See,&nbsp;Christian Rixen,&nbsp;Robert D. Hollister","doi":"10.1111/gcb.70153","DOIUrl":null,"url":null,"abstract":"<p>The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above- and below-ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine-root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome. We observed asynchronous growth between above- and below-ground plant tissue, with the below-ground season extending up to 74% (~56 days) beyond the onset of above-ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity, and growth rates of fine roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below-ground carbon storage as the climate warms and roots remain active in unfrozen soils for longer. Taken together, our findings of increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrub and graminoid abundance, indicate increased below-ground productivity and altered carbon cycling in the tundra biome.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 4","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70153","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70153","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above- and below-ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine-root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome. We observed asynchronous growth between above- and below-ground plant tissue, with the below-ground season extending up to 74% (~56 days) beyond the onset of above-ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity, and growth rates of fine roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below-ground carbon storage as the climate warms and roots remain active in unfrozen soils for longer. Taken together, our findings of increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrub and graminoid abundance, indicate increased below-ground productivity and altered carbon cycling in the tundra biome.

Abstract Image

Abstract Image

苔原植被群落类型(而非小气候)控制着地上和地下物候的异步性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信