Elise C. Gallois, Isla H. Myers-Smith, Colleen M. Iversen, Verity G. Salmon, Laura L. Turner, Ruby An, Sarah C. Elmendorf, Courtney G. Collins, Madelaine J. R. Anderson, Amanda Young, Lisa Pilkinton, Gesche Blume-Werry, Maude Grenier, Geerte Fälthammar-de Jong, Inge H. J. Althuizen, Casper T. Christiansen, Simone I. Lang, Cassandra Elphinstone, Greg H. R. Henry, Nicola Rammell, Michelle C. Mack, Craig See, Christian Rixen, Robert D. Hollister
{"title":"Tundra Vegetation Community Type, Not Microclimate, Controls Asynchrony of Above- and Below-Ground Phenology","authors":"Elise C. Gallois, Isla H. Myers-Smith, Colleen M. Iversen, Verity G. Salmon, Laura L. Turner, Ruby An, Sarah C. Elmendorf, Courtney G. Collins, Madelaine J. R. Anderson, Amanda Young, Lisa Pilkinton, Gesche Blume-Werry, Maude Grenier, Geerte Fälthammar-de Jong, Inge H. J. Althuizen, Casper T. Christiansen, Simone I. Lang, Cassandra Elphinstone, Greg H. R. Henry, Nicola Rammell, Michelle C. Mack, Craig See, Christian Rixen, Robert D. Hollister","doi":"10.1111/gcb.70153","DOIUrl":null,"url":null,"abstract":"<p>The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above- and below-ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine-root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome. We observed asynchronous growth between above- and below-ground plant tissue, with the below-ground season extending up to 74% (~56 days) beyond the onset of above-ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity, and growth rates of fine roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below-ground carbon storage as the climate warms and roots remain active in unfrozen soils for longer. Taken together, our findings of increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrub and graminoid abundance, indicate increased below-ground productivity and altered carbon cycling in the tundra biome.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 4","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70153","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70153","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above- and below-ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine-root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome. We observed asynchronous growth between above- and below-ground plant tissue, with the below-ground season extending up to 74% (~56 days) beyond the onset of above-ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity, and growth rates of fine roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below-ground carbon storage as the climate warms and roots remain active in unfrozen soils for longer. Taken together, our findings of increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrub and graminoid abundance, indicate increased below-ground productivity and altered carbon cycling in the tundra biome.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.