Jesse Norris, Stefan Rahimi, Lei Huang, Benjamin Bass, Chad W. Thackeray, Alex Hall
{"title":"Uncertainty of 21st Century western U.S. snowfall loss derived from regional climate model large ensemble","authors":"Jesse Norris, Stefan Rahimi, Lei Huang, Benjamin Bass, Chad W. Thackeray, Alex Hall","doi":"10.1038/s41612-025-01002-2","DOIUrl":null,"url":null,"abstract":"<p>The western United States is dependent on winter snowfall over its major mountain ranges, which gradually melts each year, serving as a natural reservoir for water resources. In a future warmer climate, much of this snowfall could be replaced by rain, making it more challenging to capture and store water. In this study, we utilize an ensemble of dynamically downscaled simulations forced by 14 global climate models (GCMs). These GCMs project wildly different futures, in terms of both temperature and precipitation change, producing significant uncertainty in snowfall projections. Here we exploit the robust statistics of the downscaled ensemble, and diagose the sensitivity of end-of-century snowfall loss across the region to both warming and regional wetting/drying in the driving GCM. The windward slopes of the Sierra Nevada and Cascades are particularly sensitive to warming (losing ~ 15% annual snowfall per degree warming), with little influence of precipitation. By contrast, snowfall loss in the inter-mountain west is less sensitive to warming (~ 5% K<sup>−1</sup>), but is significantly offset/exacerbated by precipitation changes (~ 0.5% snow per 1% precipitation). Combining such sensitivities with the warming and regional precipitation signals in the full CMIP6 ensemble, we can fully quantify likely snowfall loss and its uncertainty at any location, for any emissions scenario. We find that the western U.S. as a whole will lose 34 ± 8% of its total volumetric snowfall by end-of-century under the high-emissions SSP3-7.0 scenario, but 25 ± 6% and 17 ± 6% under the lower-emissions SSP2-4.5 and SSP1-2.6 scenarios.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"22 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01002-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The western United States is dependent on winter snowfall over its major mountain ranges, which gradually melts each year, serving as a natural reservoir for water resources. In a future warmer climate, much of this snowfall could be replaced by rain, making it more challenging to capture and store water. In this study, we utilize an ensemble of dynamically downscaled simulations forced by 14 global climate models (GCMs). These GCMs project wildly different futures, in terms of both temperature and precipitation change, producing significant uncertainty in snowfall projections. Here we exploit the robust statistics of the downscaled ensemble, and diagose the sensitivity of end-of-century snowfall loss across the region to both warming and regional wetting/drying in the driving GCM. The windward slopes of the Sierra Nevada and Cascades are particularly sensitive to warming (losing ~ 15% annual snowfall per degree warming), with little influence of precipitation. By contrast, snowfall loss in the inter-mountain west is less sensitive to warming (~ 5% K−1), but is significantly offset/exacerbated by precipitation changes (~ 0.5% snow per 1% precipitation). Combining such sensitivities with the warming and regional precipitation signals in the full CMIP6 ensemble, we can fully quantify likely snowfall loss and its uncertainty at any location, for any emissions scenario. We find that the western U.S. as a whole will lose 34 ± 8% of its total volumetric snowfall by end-of-century under the high-emissions SSP3-7.0 scenario, but 25 ± 6% and 17 ± 6% under the lower-emissions SSP2-4.5 and SSP1-2.6 scenarios.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.