{"title":"Voltinism Shifts in Response to Climate Warming Generally Benefit Populations of Multivoltine Butterflies","authors":"Tyson Wepprich, Erica Henry, Nick M. Haddad","doi":"10.1111/ele.70018","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Climate change is implicated as one contributor to insect declines. Insects may respond to warming by advancing phenology and increasing the number of generations each year (voltinism). However, if earlier phenology changes cue-response relationships, then late-season generations might lack time to complete diapause development before winter and result in doomed ‘lost generations’. Using 27 years of monitoring of 30 multivoltine butterfly species, we find the opposite, as larger late-season generations (voltinism shifts) are associated with more positive overwinter population growth rates. The potential threat of lost generations is limited to late-season species at cooler sites in years with early frosts. Overall, long-term population trends are positively correlated with larger late-season generations, suggesting that they are an adaptive response to climate warming. Still, overwinter population growth rates and long-term population trends have declined over time as the benefits of voltinism shifts have been insufficient to reverse population declines.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 4","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70018","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is implicated as one contributor to insect declines. Insects may respond to warming by advancing phenology and increasing the number of generations each year (voltinism). However, if earlier phenology changes cue-response relationships, then late-season generations might lack time to complete diapause development before winter and result in doomed ‘lost generations’. Using 27 years of monitoring of 30 multivoltine butterfly species, we find the opposite, as larger late-season generations (voltinism shifts) are associated with more positive overwinter population growth rates. The potential threat of lost generations is limited to late-season species at cooler sites in years with early frosts. Overall, long-term population trends are positively correlated with larger late-season generations, suggesting that they are an adaptive response to climate warming. Still, overwinter population growth rates and long-term population trends have declined over time as the benefits of voltinism shifts have been insufficient to reverse population declines.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.