Bioinduced phosphorus precipitation in granular sludge undergoing denitrifying biological phosphorus removal: Phosphorus recovery from sewage as hydroxyapatite

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Mengyu Zhou , Yun Han , Yang Zhuo , Bingyu Pu , Lingyun Li , Yi Liu , Dangcong Peng
{"title":"Bioinduced phosphorus precipitation in granular sludge undergoing denitrifying biological phosphorus removal: Phosphorus recovery from sewage as hydroxyapatite","authors":"Mengyu Zhou ,&nbsp;Yun Han ,&nbsp;Yang Zhuo ,&nbsp;Bingyu Pu ,&nbsp;Lingyun Li ,&nbsp;Yi Liu ,&nbsp;Dangcong Peng","doi":"10.1016/j.watres.2025.123590","DOIUrl":null,"url":null,"abstract":"<div><div>Recovering phosphorus from mainstream wastewater treatment systems by leveraging microbial metabolism without the addition of extra chemicals effectively streamlines the steps involved in phosphorus recovery from low-strength wastewater, thereby increasing the economic feasibility of the phosphorus recovery process. Hydroxyapatite (HAP, Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>OH) can be formed directly via bioinduction in biological treatment systems, serving as a potential substitute for phosphate rock. HAP formation in sewage with low phosphate and Ca<sup>2+</sup> concentrations is challenging. Denitrifying polyphosphate-accumulating organisms (DPAOs) can regulate phosphate ions and pH to facilitate HAP formation in sewage. In this study, the denitrifying biological phosphorus removal (DPR) system was established, achieving phosphorus and nitrate removal efficiencies of 99.3 % and 45.1 %, respectively. In the anaerobic and anoxic sections, the saturation index for HAP was greater than zero, indicating favourable conditions for HAP formation. Inorganic cores, identified as HAP through chemical composition and structural features, were formed in the DPR granular sludge, contributing approximately 66 % to phosphorus removal. The HAP‒DPR granular sludge, located at the bottom of the reactor, consisted of 80 wt % inorganic matter and 15.4 wt % total phosphorus, 86.1 % of which was chemical phosphorus precipitation. Microstructural analysis of HAP cores revealed poly-pellet structures with nanoscale wires. The growth of HAP minerals was not inhibited by intracellular polyphosphates. The presence of HAP cores promoted a differentiated spatial distribution of granular sludge and contributed to a differentiated microbial community structure. DPAOs were located mainly in small-sized granular sludge (Type A), whereas denitrifying glycogen-accumulating organisms were found mainly in large-sized granular sludge (Type B), where HAP formation primarily occurred. Granular sludge with higher inorganic and chemical phosphorus contents (Type C) likely originated from the disintegration of Type B. In conclusion, the HAP‒DPR system has potential for phosphorus recovery in the form of HAP directly from low-strength wastewater.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123590"},"PeriodicalIF":11.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425005032","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recovering phosphorus from mainstream wastewater treatment systems by leveraging microbial metabolism without the addition of extra chemicals effectively streamlines the steps involved in phosphorus recovery from low-strength wastewater, thereby increasing the economic feasibility of the phosphorus recovery process. Hydroxyapatite (HAP, Ca5(PO4)3OH) can be formed directly via bioinduction in biological treatment systems, serving as a potential substitute for phosphate rock. HAP formation in sewage with low phosphate and Ca2+ concentrations is challenging. Denitrifying polyphosphate-accumulating organisms (DPAOs) can regulate phosphate ions and pH to facilitate HAP formation in sewage. In this study, the denitrifying biological phosphorus removal (DPR) system was established, achieving phosphorus and nitrate removal efficiencies of 99.3 % and 45.1 %, respectively. In the anaerobic and anoxic sections, the saturation index for HAP was greater than zero, indicating favourable conditions for HAP formation. Inorganic cores, identified as HAP through chemical composition and structural features, were formed in the DPR granular sludge, contributing approximately 66 % to phosphorus removal. The HAP‒DPR granular sludge, located at the bottom of the reactor, consisted of 80 wt % inorganic matter and 15.4 wt % total phosphorus, 86.1 % of which was chemical phosphorus precipitation. Microstructural analysis of HAP cores revealed poly-pellet structures with nanoscale wires. The growth of HAP minerals was not inhibited by intracellular polyphosphates. The presence of HAP cores promoted a differentiated spatial distribution of granular sludge and contributed to a differentiated microbial community structure. DPAOs were located mainly in small-sized granular sludge (Type A), whereas denitrifying glycogen-accumulating organisms were found mainly in large-sized granular sludge (Type B), where HAP formation primarily occurred. Granular sludge with higher inorganic and chemical phosphorus contents (Type C) likely originated from the disintegration of Type B. In conclusion, the HAP‒DPR system has potential for phosphorus recovery in the form of HAP directly from low-strength wastewater.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信