Generation of ultrafast magnetic steps for coherent control

IF 32.3 1区 物理与天体物理 Q1 OPTICS
G. De Vecchi, G. Jotzu, M. Buzzi, S. Fava, T. Gebert, M. Fechner, A. V. Kimel, A. Cavalleri
{"title":"Generation of ultrafast magnetic steps for coherent control","authors":"G. De Vecchi, G. Jotzu, M. Buzzi, S. Fava, T. Gebert, M. Fechner, A. V. Kimel, A. Cavalleri","doi":"10.1038/s41566-025-01651-y","DOIUrl":null,"url":null,"abstract":"<p>A long-standing challenge in ultrafast magnetism and functional materials research, in general, has been the generation of a universal, ultrafast stimulus able to switch between stable magnetic states. Solving this problem would open up many new opportunities for fundamental studies, potentially impacting future data storage technologies. Ideally, step-like magnetic field transients with infinitely fast rise time would serve this purpose. Here we develop a new approach to generate ultrafast magnetic field steps by quenching supercurrents in a superconductor. We achieve magnetic field steps with millitesla amplitude, picosecond rise times and slew rates approaching 1 GT s<sup>–1</sup>. We test the potential of this technique by coherently rotating the magnetization in a ferrimagnet. Although in the current geometry, the magnetic field step is not sufficient to achieve complete switching, suitable improvements in the device geometry could make these magnetic steps both larger and faster. We foresee new applications ranging from quenches across phase transitions to complete switching of magnetic order parameters.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"28 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01651-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A long-standing challenge in ultrafast magnetism and functional materials research, in general, has been the generation of a universal, ultrafast stimulus able to switch between stable magnetic states. Solving this problem would open up many new opportunities for fundamental studies, potentially impacting future data storage technologies. Ideally, step-like magnetic field transients with infinitely fast rise time would serve this purpose. Here we develop a new approach to generate ultrafast magnetic field steps by quenching supercurrents in a superconductor. We achieve magnetic field steps with millitesla amplitude, picosecond rise times and slew rates approaching 1 GT s–1. We test the potential of this technique by coherently rotating the magnetization in a ferrimagnet. Although in the current geometry, the magnetic field step is not sufficient to achieve complete switching, suitable improvements in the device geometry could make these magnetic steps both larger and faster. We foresee new applications ranging from quenches across phase transitions to complete switching of magnetic order parameters.

Abstract Image

产生用于相干控制的超快磁阶
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信