Structural basis for membrane remodeling by the AP5–SPG11–SPG15 complex

Xinyi Mai, Yang Wang, Xi Wang, Ming Liu, Fei Teng, Zheng Liu, Ming-Yuan Su, Goran Stjepanovic
{"title":"Structural basis for membrane remodeling by the AP5–SPG11–SPG15 complex","authors":"Xinyi Mai, Yang Wang, Xi Wang, Ming Liu, Fei Teng, Zheng Liu, Ming-Yuan Su, Goran Stjepanovic","doi":"10.1038/s41594-025-01500-0","DOIUrl":null,"url":null,"abstract":"<p>The human spastizin (spastic paraplegia 15, SPG15) and spatacsin (spastic paraplegia 11, SPG11) complex is involved in the formation of lysosomes, and mutations in these two proteins are linked with hereditary autosomal-recessive spastic paraplegia. SPG11–SPG15 can cooperate with the fifth adaptor protein complex (AP5) involved in membrane sorting of late endosomes. We employed cryogenic-electron microscopy and in silico predictions to investigate the structural assemblies of the SPG11–SPG15 and AP5–SPG11–SPG15 complexes. The W-shaped SPG11–SPG15 intertwined in a head-to-head fashion, and the N-terminal region of SPG11 is required for AP5 complex interaction and assembly. The AP5 complex is in a super-open conformation. Our findings reveal that the AP5–SPG11–SPG15 complex can bind PI3P molecules, sense membrane curvature and drive membrane remodeling in vitro. These studies provide insights into the structure and function of the spastic paraplegia AP5–SPG11–SPG15 complex, which is essential for the initiation of autolysosome tubulation.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01500-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human spastizin (spastic paraplegia 15, SPG15) and spatacsin (spastic paraplegia 11, SPG11) complex is involved in the formation of lysosomes, and mutations in these two proteins are linked with hereditary autosomal-recessive spastic paraplegia. SPG11–SPG15 can cooperate with the fifth adaptor protein complex (AP5) involved in membrane sorting of late endosomes. We employed cryogenic-electron microscopy and in silico predictions to investigate the structural assemblies of the SPG11–SPG15 and AP5–SPG11–SPG15 complexes. The W-shaped SPG11–SPG15 intertwined in a head-to-head fashion, and the N-terminal region of SPG11 is required for AP5 complex interaction and assembly. The AP5 complex is in a super-open conformation. Our findings reveal that the AP5–SPG11–SPG15 complex can bind PI3P molecules, sense membrane curvature and drive membrane remodeling in vitro. These studies provide insights into the structure and function of the spastic paraplegia AP5–SPG11–SPG15 complex, which is essential for the initiation of autolysosome tubulation.

Abstract Image

AP5-SPG11-SPG15复合物重塑膜的结构基础
人痉挛蛋白(spastizin, SPG15)和痉挛蛋白(spatacsin, SPG11)复合物参与溶酶体的形成,这两种蛋白的突变与遗传性常染色体隐性痉挛性截瘫有关。SPG11-SPG15可与第五接头蛋白复合物(AP5)协同参与后期核内体的膜分选。我们利用低温电子显微镜和硅预测研究了SPG11-SPG15和AP5-SPG11-SPG15配合物的结构组装。w形的SPG11 - spg15以头对头的方式缠绕在一起,SPG11的n端区域是AP5复合物相互作用和组装所必需的。AP5复合体呈超开放构象。我们的研究结果表明,AP5-SPG11-SPG15复合物可以结合PI3P分子,感知膜曲率并驱动膜重塑。这些研究提供了对痉挛截瘫AP5-SPG11-SPG15复合物的结构和功能的见解,该复合物对自溶酶体微管的起始至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信