Triple-network model–based graph theory analysis of the effectiveness of low-dose ketamine in patients with treatment-resistant depression: two resting-state functional MRI clinical trials
{"title":"Triple-network model–based graph theory analysis of the effectiveness of low-dose ketamine in patients with treatment-resistant depression: two resting-state functional MRI clinical trials","authors":"Wei-Chen Lin, Li-Kai Cheng, Tung-Ping Su, Li-Fen Chen, Pei-Chi Tu, Cheng-Ta Li, Ya-Mei Bai, Shih-Jen Tsai, Mu-Hong Chen","doi":"10.1192/bjp.2025.14","DOIUrl":null,"url":null,"abstract":"<span>Background</span><p>Evidence suggests the crucial role of dysfunctional default mode (DMN), salience and frontoparietal (FPN) networks, collectively termed the triple network model, in the pathophysiology of treatment-resistant depression (TRD).</p><span>Aims</span><p>Using the graph theory- and seed-based functional connectivity analyses, we attempted to elucidate the role of low-dose ketamine in the triple networks, namely the DMN, salience and FPN.</p><span>Method</span><p>Resting-state functional connectivity magnetic resonance imaging (rs–fcMRI) data derived from two previous clinical trials of a single, low-dose ketamine infusion were analysed. In clinical trial 1 (Trial 1), patients with TRD were randomised to either a ketamine or normal saline group, while in clinical trial 2 (Trial 2) those patients with TRD and pronounced suicidal symptoms received a single infusion of either 0.05 mg/kg ketamine or 0.045 mg/kg midazolam. All participants underwent rs–fcMRI pre and post infusion at Day 3. Both graph theory- and seed-based functional connectivity analyses were performed independently.</p><span>Results</span><p>Trial 1 demonstrated significant group-by-time effects on the degree centrality and cluster coefficient in the right posterior cingulate cortex (PCC) cortex ventral 23a and b (DMN) and the cluster coefficient in the right supramarginal gyrus perisylvian language (salience). Trial 2 found a significant group-by-time effect on the characteristic path length in the left PCC 7Am (DMN). In addition, both ketamine and normal saline infusions exerted a time effect on the cluster coefficient in the right dorsolateral prefrontal cortex a9-46v (FPN) in Trial 1.</p><span>Conclusions</span><p>These findings may support the utility of the triple-network model in elucidating ketamine’s antidepressant effect. Alterations in DMN, salience and FPN function may underlie this effect.</p>","PeriodicalId":22495,"journal":{"name":"The British Journal of Psychiatry","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British Journal of Psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1192/bjp.2025.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Evidence suggests the crucial role of dysfunctional default mode (DMN), salience and frontoparietal (FPN) networks, collectively termed the triple network model, in the pathophysiology of treatment-resistant depression (TRD).
Aims
Using the graph theory- and seed-based functional connectivity analyses, we attempted to elucidate the role of low-dose ketamine in the triple networks, namely the DMN, salience and FPN.
Method
Resting-state functional connectivity magnetic resonance imaging (rs–fcMRI) data derived from two previous clinical trials of a single, low-dose ketamine infusion were analysed. In clinical trial 1 (Trial 1), patients with TRD were randomised to either a ketamine or normal saline group, while in clinical trial 2 (Trial 2) those patients with TRD and pronounced suicidal symptoms received a single infusion of either 0.05 mg/kg ketamine or 0.045 mg/kg midazolam. All participants underwent rs–fcMRI pre and post infusion at Day 3. Both graph theory- and seed-based functional connectivity analyses were performed independently.
Results
Trial 1 demonstrated significant group-by-time effects on the degree centrality and cluster coefficient in the right posterior cingulate cortex (PCC) cortex ventral 23a and b (DMN) and the cluster coefficient in the right supramarginal gyrus perisylvian language (salience). Trial 2 found a significant group-by-time effect on the characteristic path length in the left PCC 7Am (DMN). In addition, both ketamine and normal saline infusions exerted a time effect on the cluster coefficient in the right dorsolateral prefrontal cortex a9-46v (FPN) in Trial 1.
Conclusions
These findings may support the utility of the triple-network model in elucidating ketamine’s antidepressant effect. Alterations in DMN, salience and FPN function may underlie this effect.