A Low-Cost Method for Characterizing the Inception and Extent of Cavitation in High-Pressure Homogenizers

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Andreas Håkansson
{"title":"A Low-Cost Method for Characterizing the Inception and Extent of Cavitation in High-Pressure Homogenizers","authors":"Andreas Håkansson","doi":"10.1021/acs.iecr.5c00512","DOIUrl":null,"url":null,"abstract":"High-pressure homogenizers are prone to cavitation, which causes wear and influences breakup efficiency. However, the inception point, as well as the extent and intensity, depends on geometry, operation, and fluid properties. While several methods have been previously suggested to characterize cavitation in homogenizer valves (including ultrasonic methods), they have required highly specialized, sensitive, and costly equipment. Consequently, these methods have not been widely adopted. This contribution demonstrates how a low-cost (∼$100) handy recorder, combined with simple audio processing (software provided), can be used to rapidly measure cavitation inception and extent in a high-pressure homogenizer. For the laboratory-scale homogenizer used to exemplify the method, cavitation inception occurs at a cavitation number of 0.15. From an applied perspective, this approach shows how the operator can easily choose between running the homogenizer with or without cavitation by adjusting the backpressure (i.e., having no backpressure results in cavitation regardless of homogenizing pressure, while a 5 MPa backpressure suppresses cavitation regardless of homogenizing pressure).","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"75 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.5c00512","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-pressure homogenizers are prone to cavitation, which causes wear and influences breakup efficiency. However, the inception point, as well as the extent and intensity, depends on geometry, operation, and fluid properties. While several methods have been previously suggested to characterize cavitation in homogenizer valves (including ultrasonic methods), they have required highly specialized, sensitive, and costly equipment. Consequently, these methods have not been widely adopted. This contribution demonstrates how a low-cost (∼$100) handy recorder, combined with simple audio processing (software provided), can be used to rapidly measure cavitation inception and extent in a high-pressure homogenizer. For the laboratory-scale homogenizer used to exemplify the method, cavitation inception occurs at a cavitation number of 0.15. From an applied perspective, this approach shows how the operator can easily choose between running the homogenizer with or without cavitation by adjusting the backpressure (i.e., having no backpressure results in cavitation regardless of homogenizing pressure, while a 5 MPa backpressure suppresses cavitation regardless of homogenizing pressure).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信