Synergetic Electrochemical Degradation of Amoxicillin (AMX) with Sustainable Transition Metal Oxides-Anode and Waste-derived Carbon-Cathode System from a Circular Economy Approach

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Jorge Adrián Castro-Fernández, Álvaro Ramírez, Martín Muñoz-Morales, Erika Bustos, Javier Llanos
{"title":"Synergetic Electrochemical Degradation of Amoxicillin (AMX) with Sustainable Transition Metal Oxides-Anode and Waste-derived Carbon-Cathode System from a Circular Economy Approach","authors":"Jorge Adrián Castro-Fernández, Álvaro Ramírez, Martín Muñoz-Morales, Erika Bustos, Javier Llanos","doi":"10.1016/j.electacta.2025.146181","DOIUrl":null,"url":null,"abstract":"This work explores a novel electrochemical approach for the efficient degradation of amoxicillin (AMX), a widely used antibiotic and emerging water pollutant. This is the first time reported a system combines an IrO₂-Ta₂O₅|Ti anode with cathodes modified using activated carbon derived from two types of waste biomass: <em>Phragmites australis</em> (PA) and <em>Spergularia rubra</em> (SR), having in mind the circular economy. This study evaluated the influence of aeration and current density on AMX degradation efficiency. Results showed that the carbon-modified cathodes enhanced the production of hydrogen peroxide (H₂O₂) via the two-electron oxygen reduction reaction, which facilitated the generation of reactive hydroxyl radicals (<sup>•</sup>OH), which improve significantly the degradation rate of AMX. Under optimal conditions (aeration and 2.54 mA cm<sup>-2</sup> current density), the system achieved complete AMX degradation within 30 minutes, with substantial reductions in energy consumption (0.1096 and 0.0895 kWh m<sup>-3</sup> order<sup>-1</sup> for PA and SR, respectively, when applying 2.54 mA cm<sup>-2</sup>) compared to conventional platinum cathodes (4.9844 kWh m<sup>-3</sup> order<sup>-1</sup> for Pt). Acute toxicity assays conducted with <em>Vibrio fischeri</em> demonstrated a significant reduction in the toxicity (measured as inhibition percentage), with values of 8.49% and 8.79%, respectively (<em>vs</em> 21.88 % of initial sample). These findings highlight the potential of integrating waste-derived carbon materials with transition metal oxide anodes for sustainable water treatment processes, offering a promising alternative to traditional electrochemical systems for the degradation of pharmaceutical contaminants supporting the sustainable development goal number six (SDG 6) focus on clean water and sanitation.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"38 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.146181","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores a novel electrochemical approach for the efficient degradation of amoxicillin (AMX), a widely used antibiotic and emerging water pollutant. This is the first time reported a system combines an IrO₂-Ta₂O₅|Ti anode with cathodes modified using activated carbon derived from two types of waste biomass: Phragmites australis (PA) and Spergularia rubra (SR), having in mind the circular economy. This study evaluated the influence of aeration and current density on AMX degradation efficiency. Results showed that the carbon-modified cathodes enhanced the production of hydrogen peroxide (H₂O₂) via the two-electron oxygen reduction reaction, which facilitated the generation of reactive hydroxyl radicals (OH), which improve significantly the degradation rate of AMX. Under optimal conditions (aeration and 2.54 mA cm-2 current density), the system achieved complete AMX degradation within 30 minutes, with substantial reductions in energy consumption (0.1096 and 0.0895 kWh m-3 order-1 for PA and SR, respectively, when applying 2.54 mA cm-2) compared to conventional platinum cathodes (4.9844 kWh m-3 order-1 for Pt). Acute toxicity assays conducted with Vibrio fischeri demonstrated a significant reduction in the toxicity (measured as inhibition percentage), with values of 8.49% and 8.79%, respectively (vs 21.88 % of initial sample). These findings highlight the potential of integrating waste-derived carbon materials with transition metal oxide anodes for sustainable water treatment processes, offering a promising alternative to traditional electrochemical systems for the degradation of pharmaceutical contaminants supporting the sustainable development goal number six (SDG 6) focus on clean water and sanitation.

Abstract Image

从循环经济角度看可持续过渡金属氧化物-阳极和废物衍生碳-阴极系统协同电化学降解阿莫西林(AMX)
这项研究探索了一种高效降解阿莫西林(AMX)的新型电化学方法,阿莫西林是一种广泛使用的抗生素,也是一种新出现的水污染物。这是首次报道将 IrO₂-Ta₂O₅|Ti 阳极与使用从两种废弃生物质中提取的活性炭改性的阴极相结合的系统:在考虑到循环经济的前提下,该研究使用从两种生物质废弃物中提取的活性炭对阳极进行了改性。这项研究评估了曝气和电流密度对 AMX 降解效率的影响。结果表明,碳改性阴极通过双电子氧还原反应提高了过氧化氢(H₂O₂)的生成,促进了活性羟基自由基(-OH)的生成,从而显著提高了 AMX 的降解率。在最佳条件下(通气和 2.54 mA cm-2 电流密度),该系统可在 30 分钟内实现 AMX 的完全降解,与传统的铂阴极(铂为 4.9844 kWh m-3 order-1)相比,能耗大幅降低(使用 2.54 mA cm-2 时,PA 和 SR 的能耗分别为 0.1096 和 0.0895 kWh m-3 order-1)。用鱼腥弧菌进行的急性毒性试验表明,毒性(以抑制百分比衡量)显著降低,分别为 8.49% 和 8.79%(与初始样品的 21.88% 相比)。这些发现凸显了将废物衍生碳材料与过渡金属氧化物阳极整合到可持续水处理工艺中的潜力,为降解药物污染物提供了一种替代传统电化学系统的可行方法,支持了可持续发展目标 6(SDG 6)中对清洁水和卫生的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信