{"title":"Using Bayesian inference to distinguish neutrino flavor conversion scenarios via a prospective supernova neutrino signal","authors":"Sajad Abbar, Maria Cristina Volpe","doi":"10.1103/physrevd.111.083005","DOIUrl":null,"url":null,"abstract":"The upcoming galactic core-collapse supernova is expected to produce a considerable number of neutrino events within terrestrial detectors. By using Bayesian inference techniques, we address the feasibility of distinguishing among various neutrino flavor conversion scenarios in the supernova environment, using such a neutrino signal. In addition to the conventional Mikheev-Smirnov-Wolfenstein, we explore several more sophisticated flavor conversion scenarios, such as spectral swapping, fast flavor conversions, flavor equipartition caused by nonstandard neutrino interactions, magnetically induced flavor equilibration, and flavor equilibrium resulting from slow flavor conversions. Our analysis demonstrates that with a sufficiently large number of neutrino events during the supernova accretion phase (exceeding several hundreds), there exists a good probability of distinguishing among feasible neutrino flavor conversion scenarios in the supernova environment. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.083005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The upcoming galactic core-collapse supernova is expected to produce a considerable number of neutrino events within terrestrial detectors. By using Bayesian inference techniques, we address the feasibility of distinguishing among various neutrino flavor conversion scenarios in the supernova environment, using such a neutrino signal. In addition to the conventional Mikheev-Smirnov-Wolfenstein, we explore several more sophisticated flavor conversion scenarios, such as spectral swapping, fast flavor conversions, flavor equipartition caused by nonstandard neutrino interactions, magnetically induced flavor equilibration, and flavor equilibrium resulting from slow flavor conversions. Our analysis demonstrates that with a sufficiently large number of neutrino events during the supernova accretion phase (exceeding several hundreds), there exists a good probability of distinguishing among feasible neutrino flavor conversion scenarios in the supernova environment. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.