Kelsey L. Anbuhl, Marielisa Diez Castro, Nikki A. Lee, Vivian S. Lee, Dan H. Sanes
{"title":"The cingulate cortex facilitates auditory perception under challenging listening conditions","authors":"Kelsey L. Anbuhl, Marielisa Diez Castro, Nikki A. Lee, Vivian S. Lee, Dan H. Sanes","doi":"10.1073/pnas.2412453122","DOIUrl":null,"url":null,"abstract":"We often exert greater cognitive resources (i.e., listening effort) to understand speech under challenging acoustic conditions. This mechanism can be overwhelmed in those with hearing loss, resulting in cognitive fatigue in adults and potentially impeding language acquisition in children. However, the neural mechanisms that support listening effort are uncertain. Evidence from human studies suggests that the cingulate cortex is engaged under difficult listening conditions and may exert top–down modulation of the auditory cortex (AC). Here, we asked whether the gerbil cingulate cortex (Cg) sends anatomical projections to the AC that facilitate perceptual performance. To model challenging listening conditions, we used a sound discrimination task in which stimulus parameters were presented in either “Easy” or “Hard” blocks (i.e., long or short stimulus duration, respectively). Gerbils achieved statistically identical psychometric performance in Easy and Hard blocks. Anatomical tracing experiments revealed a strong, descending projection from layer 2/3 of the Cg1 subregion of the cingulate cortex to superficial and deep layers of the primary and dorsal AC. To determine whether Cg improves task performance under challenging conditions, we bilaterally infused muscimol to inactivate Cg1 and found that psychometric thresholds were degraded for only Hard blocks. To test whether the Cg-to-AC projection facilitates task performance, we chemogenetically inactivated these inputs and found that performance was only degraded during Hard blocks. Taken together, the results reveal a descending cortical pathway that facilitates perceptual performance during challenging listening conditions.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"50 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2412453122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We often exert greater cognitive resources (i.e., listening effort) to understand speech under challenging acoustic conditions. This mechanism can be overwhelmed in those with hearing loss, resulting in cognitive fatigue in adults and potentially impeding language acquisition in children. However, the neural mechanisms that support listening effort are uncertain. Evidence from human studies suggests that the cingulate cortex is engaged under difficult listening conditions and may exert top–down modulation of the auditory cortex (AC). Here, we asked whether the gerbil cingulate cortex (Cg) sends anatomical projections to the AC that facilitate perceptual performance. To model challenging listening conditions, we used a sound discrimination task in which stimulus parameters were presented in either “Easy” or “Hard” blocks (i.e., long or short stimulus duration, respectively). Gerbils achieved statistically identical psychometric performance in Easy and Hard blocks. Anatomical tracing experiments revealed a strong, descending projection from layer 2/3 of the Cg1 subregion of the cingulate cortex to superficial and deep layers of the primary and dorsal AC. To determine whether Cg improves task performance under challenging conditions, we bilaterally infused muscimol to inactivate Cg1 and found that psychometric thresholds were degraded for only Hard blocks. To test whether the Cg-to-AC projection facilitates task performance, we chemogenetically inactivated these inputs and found that performance was only degraded during Hard blocks. Taken together, the results reveal a descending cortical pathway that facilitates perceptual performance during challenging listening conditions.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.