LMX1B missense-perturbation of regulatory element footprints disrupts serotonergic forebrain axon arborization

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Brent Eastman, Nobuko Tabuchi, Xinrui L. Zhang, William C. Spencer, Evan S. Deneris
{"title":"LMX1B missense-perturbation of regulatory element footprints disrupts serotonergic forebrain axon arborization","authors":"Brent Eastman, Nobuko Tabuchi, Xinrui L. Zhang, William C. Spencer, Evan S. Deneris","doi":"10.1073/pnas.2411716122","DOIUrl":null,"url":null,"abstract":"Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic <jats:italic>Pet1</jats:italic> neurons that give rise to mature serotonin (5-HT) neurons; over two hundred pathogenic heterozygous mutations have been discovered in human <jats:italic>LMX1B,</jats:italic> yet their impact on brain development has not been investigated. Here, we developed mouse models with different <jats:italic>LMX1B</jats:italic> DNA-binding missense mutations. Missense heterozygosity broadly altered <jats:italic>Pet1</jats:italic> neuron transcriptomes, but expression changes converged on axon and synapse genes. Missense heterozygosity effected highly specific deficits in the postnatal maturation of forebrain serotonin axon arbors, primarily in the hippocampus and motor cortex, which was associated with spatial memory defects. Digital genomic footprinting (DGF) revealed that missense heterozygosity caused complete loss of Lmx1b motif protection and chromatin accessibility at sites enriched for a distal active enhancer/active promoter histone signature and homeodomain binding motifs; at other bound Lmx1b motifs, varying levels of losses, gains, or no change in motif binding and accessibility were found. The spectrum of footprint changes was strongly associated with synapse and axon genes. Further, Lmx1b missense heterozygosity caused wide disruption of Lmx1b-dependent GRNs comprising diverse TFs expressed in <jats:italic>Pet1</jats:italic> neurons. These findings reveal an unanticipated continuum of Lmx1b missense-forced perturbations on <jats:italic>Pet1</jats:italic> neuron regulatory element TF binding and accessibility. Our work illustrates DGF’s utility for gaining unique insight into how expressed TF missense mutations interfere with developing neuronal GRNs.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"38 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2411716122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic Pet1 neurons that give rise to mature serotonin (5-HT) neurons; over two hundred pathogenic heterozygous mutations have been discovered in human LMX1B, yet their impact on brain development has not been investigated. Here, we developed mouse models with different LMX1B DNA-binding missense mutations. Missense heterozygosity broadly altered Pet1 neuron transcriptomes, but expression changes converged on axon and synapse genes. Missense heterozygosity effected highly specific deficits in the postnatal maturation of forebrain serotonin axon arbors, primarily in the hippocampus and motor cortex, which was associated with spatial memory defects. Digital genomic footprinting (DGF) revealed that missense heterozygosity caused complete loss of Lmx1b motif protection and chromatin accessibility at sites enriched for a distal active enhancer/active promoter histone signature and homeodomain binding motifs; at other bound Lmx1b motifs, varying levels of losses, gains, or no change in motif binding and accessibility were found. The spectrum of footprint changes was strongly associated with synapse and axon genes. Further, Lmx1b missense heterozygosity caused wide disruption of Lmx1b-dependent GRNs comprising diverse TFs expressed in Pet1 neurons. These findings reveal an unanticipated continuum of Lmx1b missense-forced perturbations on Pet1 neuron regulatory element TF binding and accessibility. Our work illustrates DGF’s utility for gaining unique insight into how expressed TF missense mutations interfere with developing neuronal GRNs.
LMX1B调控元件足迹的错义扰乱了5-羟色胺能前脑轴突的轴向化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信