{"title":"Renormalized volume, Polyakov anomaly, and orbifold Riemann surfaces","authors":"Hossein Mohammadi, Ali Naseh, Behrad Taghavi","doi":"10.1103/physrevd.111.086005","DOIUrl":null,"url":null,"abstract":"In [B. Taghavi Classical Liouville action and uniformization of orbifold Riemann surfaces, ], two of the authors studied the function 𝒮</a:mi></a:mrow>m</a:mi></a:mrow></a:msub>=</a:mo>S</a:mi></a:mrow>m</a:mi></a:mrow></a:msub>−</a:mo>π</a:mi>∑</a:mo></a:mrow>i</a:mi>=</a:mo>1</a:mn></a:mrow>n</a:mi></a:mrow></a:msubsup>(</a:mo>m</a:mi></a:mrow>i</a:mi></a:mrow></a:msub>−</a:mo>1</a:mn></a:mrow>m</a:mi></a:mrow>i</a:mi></a:mrow></a:msub></a:mrow></a:mfrac>)</a:mo>log</a:mi>h</a:mi></a:mrow>i</a:mi></a:mrow></a:msub></a:mrow></a:math> for orbifold Riemann surfaces of signature <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mo stretchy=\"false\">(</h:mo><h:mi>g</h:mi><h:mo>;</h:mo><h:msub><h:mi>m</h:mi><h:mn>1</h:mn></h:msub><h:mo>,</h:mo><h:mo>…</h:mo><h:mo>,</h:mo><h:msub><h:mi>m</h:mi><h:msub><h:mi>n</h:mi><h:mi>e</h:mi></h:msub></h:msub><h:mo>;</h:mo><h:msub><h:mi>n</h:mi><h:mi>p</h:mi></h:msub><h:mo stretchy=\"false\">)</h:mo></h:math> on the generalized Schottky space <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:mrow><l:msub><l:mrow><l:mi mathvariant=\"fraktur\">S</l:mi></l:mrow><l:mrow><l:mi>g</l:mi><l:mo>,</l:mo><l:mi>n</l:mi></l:mrow></l:msub><l:mo stretchy=\"false\">(</l:mo><l:mi mathvariant=\"bold-italic\">m</l:mi><l:mo stretchy=\"false\">)</l:mo></l:mrow></l:math>. In this paper, we prove the holographic duality between <r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><r:mrow><r:msub><r:mrow><r:mi>𝒮</r:mi></r:mrow><r:mrow><r:mi mathvariant=\"bold-italic\">m</r:mi></r:mrow></r:msub></r:mrow></r:math> and the renormalized hyperbolic volume <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:msub><u:mi>V</u:mi><u:mi>ren</u:mi></u:msub></u:math> of the corresponding Schottky 3-orbifolds with lines of conical singularity that reach the conformal boundary. In case of the classical Liouville action on <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mi mathvariant=\"fraktur\">S</w:mi><w:mi>g</w:mi></w:msub></w:math> and <z:math xmlns:z=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><z:msub><z:mi mathvariant=\"fraktur\">S</z:mi><z:mrow><z:mi>g</z:mi><z:mo>,</z:mo><z:mi>n</z:mi></z:mrow></z:msub><z:mo stretchy=\"false\">(</z:mo><z:mo mathvariant=\"bold\">∞</z:mo><z:mo stretchy=\"false\">)</z:mo></z:math>, the holography principle was proved in [K. Krasnov, Holography and Riemann surfaces, , 929 (2000).], [J. Park , Potentials and Chern forms for Weil–Petersson and Takhtajan–Zograf metrics on moduli spaces, , 856 (2017).], respectively. Our result implies that <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:msub><fb:mi>V</fb:mi><fb:mi>ren</fb:mi></fb:msub></fb:math> acts as a Kähler potential for a particular combination of the Weil-Petersson and Takhtajan-Zograf metrics that appears in the local index theorem for orbifold Riemann surfaces, as discussed by [L. A. Takhtajan and P. Zograf, Local index theorem for orbifold Riemann surfaces, .]. Moreover, we demonstrate that under the conformal transformations, the change of function <hb:math xmlns:hb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><hb:mrow><hb:msub><hb:mrow><hb:mi>𝒮</hb:mi></hb:mrow><hb:mrow><hb:mi mathvariant=\"bold-italic\">m</hb:mi></hb:mrow></hb:msub></hb:mrow></hb:math> is equivalent to the Polyakov anomaly, which indicates that the function <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:mrow><kb:msub><kb:mrow><kb:mi>𝒮</kb:mi></kb:mrow><kb:mrow><kb:mi mathvariant=\"bold-italic\">m</kb:mi></kb:mrow></kb:msub></kb:mrow></kb:math> is a consistent height function with a unique hyperbolic solution. Consequently, the associated renormalized hyperbolic volume <nb:math xmlns:nb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><nb:msub><nb:mi>V</nb:mi><nb:mi>ren</nb:mi></nb:msub></nb:math> also admits a Polyakov anomaly formula. The method we used to establish this equivalence may provide an alternative approach to derive the renormalized Polyakov anomaly for Riemann surfaces with punctures (cusps), as described by [P. Albin , Ricci flow and the determinant of the Laplacian on non-compact surfaces, .]. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"105 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.086005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In [B. Taghavi Classical Liouville action and uniformization of orbifold Riemann surfaces, ], two of the authors studied the function 𝒮m=Sm−π∑i=1n(mi−1mi)loghi for orbifold Riemann surfaces of signature (g;m1,…,mne;np) on the generalized Schottky space Sg,n(m). In this paper, we prove the holographic duality between 𝒮m and the renormalized hyperbolic volume Vren of the corresponding Schottky 3-orbifolds with lines of conical singularity that reach the conformal boundary. In case of the classical Liouville action on Sg and Sg,n(∞), the holography principle was proved in [K. Krasnov, Holography and Riemann surfaces, , 929 (2000).], [J. Park , Potentials and Chern forms for Weil–Petersson and Takhtajan–Zograf metrics on moduli spaces, , 856 (2017).], respectively. Our result implies that Vren acts as a Kähler potential for a particular combination of the Weil-Petersson and Takhtajan-Zograf metrics that appears in the local index theorem for orbifold Riemann surfaces, as discussed by [L. A. Takhtajan and P. Zograf, Local index theorem for orbifold Riemann surfaces, .]. Moreover, we demonstrate that under the conformal transformations, the change of function 𝒮m is equivalent to the Polyakov anomaly, which indicates that the function 𝒮m is a consistent height function with a unique hyperbolic solution. Consequently, the associated renormalized hyperbolic volume Vren also admits a Polyakov anomaly formula. The method we used to establish this equivalence may provide an alternative approach to derive the renormalized Polyakov anomaly for Riemann surfaces with punctures (cusps), as described by [P. Albin , Ricci flow and the determinant of the Laplacian on non-compact surfaces, .]. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.