Detecting short-interval longitudinal cortical atrophy in neurodegenerative dementias via cluster scanning: A proof of concept.

Yuta Katsumi, Michael Brickhouse, Lindsay C Hanford, Jared A Nielsen, Maxwell L Elliott, Ross W Mair, Alexandra Touroutoglou, Mark C Eldaief, Randy L Buckner, Bradford C Dickerson
{"title":"Detecting short-interval longitudinal cortical atrophy in neurodegenerative dementias via cluster scanning: A proof of concept.","authors":"Yuta Katsumi, Michael Brickhouse, Lindsay C Hanford, Jared A Nielsen, Maxwell L Elliott, Ross W Mair, Alexandra Touroutoglou, Mark C Eldaief, Randy L Buckner, Bradford C Dickerson","doi":"10.1101/2025.03.14.25323769","DOIUrl":null,"url":null,"abstract":"<p><p>Regional brain atrophy estimated from structural magnetic resonance imaging (MRI) is a widely used measure of neurodegeneration in Alzheimer's disease (AD), Frontotemporal Lobar Degeneration (FTLD), and other dementias. Yet, traditional MRI-derived morphometric estimates are susceptible to measurement errors, posing a challenge for reliably detecting longitudinal atrophy, particularly over short intervals. Here, we examined the utility of multiple MRI scans acquired in rapid succession (i.e., <i>cluster scanning</i> ) for detecting longitudinal cortical atrophy over 3- and 6-month intervals within individual patients. Four individuals with mild cognitive impairment or mild dementia likely due to AD or FTLD participated in this study. At baseline, 3 months, and 6 months, structural MRI data were collected on a 3 Tesla scanner using a fast 1.2-mm T1-weighted multi-echo magnetization-prepared rapid gradient echo (MEMPRAGE) sequence (acquisition time = 2'23''). At each timepoint, participants underwent up to 32 MEMPRAGE scans acquired in four separate sessions over two days. Using linear mixed-effects models, phenotypically vulnerable cortical (\"core atrophy\") regions exhibited statistically significant longitudinal atrophy in all participants (i.e., decreased cortical thickness) by 3 months and further demonstrated preferential vulnerability compared to control regions in three of the participants over at least one of the 3-month intervals. These findings provide proof-of-concept evidence that pooling multiple morphometric estimates derived from cluster scanning can detect longitudinal cortical atrophy over short intervals in individual patients with neurodegenerative dementias.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.14.25323769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regional brain atrophy estimated from structural magnetic resonance imaging (MRI) is a widely used measure of neurodegeneration in Alzheimer's disease (AD), Frontotemporal Lobar Degeneration (FTLD), and other dementias. Yet, traditional MRI-derived morphometric estimates are susceptible to measurement errors, posing a challenge for reliably detecting longitudinal atrophy, particularly over short intervals. Here, we examined the utility of multiple MRI scans acquired in rapid succession (i.e., cluster scanning ) for detecting longitudinal cortical atrophy over 3- and 6-month intervals within individual patients. Four individuals with mild cognitive impairment or mild dementia likely due to AD or FTLD participated in this study. At baseline, 3 months, and 6 months, structural MRI data were collected on a 3 Tesla scanner using a fast 1.2-mm T1-weighted multi-echo magnetization-prepared rapid gradient echo (MEMPRAGE) sequence (acquisition time = 2'23''). At each timepoint, participants underwent up to 32 MEMPRAGE scans acquired in four separate sessions over two days. Using linear mixed-effects models, phenotypically vulnerable cortical ("core atrophy") regions exhibited statistically significant longitudinal atrophy in all participants (i.e., decreased cortical thickness) by 3 months and further demonstrated preferential vulnerability compared to control regions in three of the participants over at least one of the 3-month intervals. These findings provide proof-of-concept evidence that pooling multiple morphometric estimates derived from cluster scanning can detect longitudinal cortical atrophy over short intervals in individual patients with neurodegenerative dementias.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信