Gender Differences in Predicting Metabolic Syndrome Among Hospital Employees Using Machine Learning Models: A Population-Based Study.

Yi-Syuan Wu, Wen-Chii Tzeng, Cheng-Wei Wu, Hao-Yi Wu, Chih-Yun Kang, Wei-Yun Wang
{"title":"Gender Differences in Predicting Metabolic Syndrome Among Hospital Employees Using Machine Learning Models: A Population-Based Study.","authors":"Yi-Syuan Wu, Wen-Chii Tzeng, Cheng-Wei Wu, Hao-Yi Wu, Chih-Yun Kang, Wei-Yun Wang","doi":"10.1097/jnr.0000000000000668","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolic syndrome (MetS) is a complex condition that captures several markers of dysregulation, including obesity, elevated blood glucose levels, dyslipidemia and hypertension. Using an approach to early prediction of MetS risk in hospital employees that takes into account the differing effects of gender may be expected to improve cardiovascular disease-related health outcomes.</p><p><strong>Purpose: </strong>In this study, machine learning techniques were applied to construct an optimized MetS prediction model for use on hospital employees.</p><p><strong>Methods: </strong>This population-based study survey included 3,537 participants aged 20 to 65 years old. Participant demographic, anthropometric data, medical history, lifestyle-related factor, and biochemical data were collected from the hospital's Health Management Information System from 2018 to 2020. MetS prediction and the investigation of gender differences were performed using six machine learning models based on the following algorithms: K-nearest neighbor, random forest, logistic regression, support vector machine, neural network, and Naïve Bayes. All analyses were performed by sequentially inputting the features in three steps according to their characteristics.</p><p><strong>Results: </strong>MetS was detected in 8.91% of the participants. Among the MetS prediction models, Naïve Bayes showed the best performance, with a sensitivity of 0.825, an accuracy of 0.859 and an area under the receiver operating characteristic curve of 0.936. Body mass index and alanine transaminase were identified as important predictive factors for MetS in participants of both genders. Age, uric acid, and aspartate transaminase were identified as important predictive factors in men, while chronic disease and phosphorous were identified as important predictive factors in women.</p><p><strong>Conclusions: </strong>The results indicate Naïve Bayes model to be useful and accurate in identifying MetS in hospital employees independent of gender. The early prediction of MetS using a model that accounts for gender differences is an important part of routine health screening and requires a multidimensional approach, including self-administered questionnaires and anthropometric and biochemical measurements.</p>","PeriodicalId":94242,"journal":{"name":"The journal of nursing research : JNR","volume":"33 2","pages":"e381"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of nursing research : JNR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/jnr.0000000000000668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Metabolic syndrome (MetS) is a complex condition that captures several markers of dysregulation, including obesity, elevated blood glucose levels, dyslipidemia and hypertension. Using an approach to early prediction of MetS risk in hospital employees that takes into account the differing effects of gender may be expected to improve cardiovascular disease-related health outcomes.

Purpose: In this study, machine learning techniques were applied to construct an optimized MetS prediction model for use on hospital employees.

Methods: This population-based study survey included 3,537 participants aged 20 to 65 years old. Participant demographic, anthropometric data, medical history, lifestyle-related factor, and biochemical data were collected from the hospital's Health Management Information System from 2018 to 2020. MetS prediction and the investigation of gender differences were performed using six machine learning models based on the following algorithms: K-nearest neighbor, random forest, logistic regression, support vector machine, neural network, and Naïve Bayes. All analyses were performed by sequentially inputting the features in three steps according to their characteristics.

Results: MetS was detected in 8.91% of the participants. Among the MetS prediction models, Naïve Bayes showed the best performance, with a sensitivity of 0.825, an accuracy of 0.859 and an area under the receiver operating characteristic curve of 0.936. Body mass index and alanine transaminase were identified as important predictive factors for MetS in participants of both genders. Age, uric acid, and aspartate transaminase were identified as important predictive factors in men, while chronic disease and phosphorous were identified as important predictive factors in women.

Conclusions: The results indicate Naïve Bayes model to be useful and accurate in identifying MetS in hospital employees independent of gender. The early prediction of MetS using a model that accounts for gender differences is an important part of routine health screening and requires a multidimensional approach, including self-administered questionnaires and anthropometric and biochemical measurements.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信