Feature Extraction Tool Using Temporal Landmarks in Arterial Blood Pressure and Photoplethysmography Waveforms.

Ravi Pal, Akos Rudas, Tiffany Williams, Jeffrey N Chiang, Anna Barney, Maxime Cannesson
{"title":"Feature Extraction Tool Using Temporal Landmarks in Arterial Blood Pressure and Photoplethysmography Waveforms.","authors":"Ravi Pal, Akos Rudas, Tiffany Williams, Jeffrey N Chiang, Anna Barney, Maxime Cannesson","doi":"10.1101/2025.03.20.25324325","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial blood pressure (ABP) and photoplethysmography (PPG) waveforms both contain vital physiological information for the prevention and treatment of cardiovascular diseases. Extracted features from these waveforms have diverse clinical applications, including predicting hyper- and hypo-tension, estimating cardiac output from ABP, and monitoring blood pressure and nociception from PPG. However, the lack of standardized tools for feature extraction limits their exploration and clinical utilization. In this study, we propose an automatic feature extraction tool that first detects temporal location of landmarks within each cardiac cycle of ABP and PPG waveforms, including the systolic phase onset, systolic phase peak, dicrotic notch, and diastolic phase peak using the iterative envelope mean method. Then, based on these landmarks, extracts 852 features per cardiac cycle, encompassing time-, statistical-, and frequency-domains. The tool's ability to detect landmarks was evaluated using ABP and PPG waveforms from a large perioperative dataset (MLORD dataset) comprising 17,327 patients. We analyzed 34,267 cardiac cycles of ABP waveforms and 33,792 cardiac cycles of PPG waveforms. Additionally, to assess the tool's real-time landmark detection capability, we retrospectively analyzed 3,000 cardiac cycles of both ABP and PPG waveforms, collected from a Philips IntelliVue MX800 patient monitor. The tool's detection performance was assessed against markings by an experienced researcher, achieving average F1-scores and error rates for ABP and PPG as follows: (1) On MLORD dataset: systolic phase onset (99.77 %, 0.35 % and 99.52 %, 0.75 %), systolic phase peak (99.80 %, 0.30 % and 99.56 %, 0.70 %), dicrotic notch (98.24 %, 2.63 % and 98.72 %, 1.96 %), and diastolic phase peak (98.59 %, 2.11 % and 98.88 %, 1.73 %); (2) On real time data: systolic phase onset (98.18 %, 3.03 % and 97.94 %, 3.43 %), systolic phase peak (98.22 %, 2.97 % and 97.74 %, 3.77 %), dicrotic notch (97.72 %, 3.80 % and 98.16 %, 3.07 %), and diastolic phase peak (98.04 %, 3.27 % and 98.08 %, 3.20 %). This tool has significant potential for supporting clinical utilization of ABP and PPG waveform features and for facilitating feature-based machine learning models for various clinical applications where features derived from these waveforms play a critical role.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.20.25324325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arterial blood pressure (ABP) and photoplethysmography (PPG) waveforms both contain vital physiological information for the prevention and treatment of cardiovascular diseases. Extracted features from these waveforms have diverse clinical applications, including predicting hyper- and hypo-tension, estimating cardiac output from ABP, and monitoring blood pressure and nociception from PPG. However, the lack of standardized tools for feature extraction limits their exploration and clinical utilization. In this study, we propose an automatic feature extraction tool that first detects temporal location of landmarks within each cardiac cycle of ABP and PPG waveforms, including the systolic phase onset, systolic phase peak, dicrotic notch, and diastolic phase peak using the iterative envelope mean method. Then, based on these landmarks, extracts 852 features per cardiac cycle, encompassing time-, statistical-, and frequency-domains. The tool's ability to detect landmarks was evaluated using ABP and PPG waveforms from a large perioperative dataset (MLORD dataset) comprising 17,327 patients. We analyzed 34,267 cardiac cycles of ABP waveforms and 33,792 cardiac cycles of PPG waveforms. Additionally, to assess the tool's real-time landmark detection capability, we retrospectively analyzed 3,000 cardiac cycles of both ABP and PPG waveforms, collected from a Philips IntelliVue MX800 patient monitor. The tool's detection performance was assessed against markings by an experienced researcher, achieving average F1-scores and error rates for ABP and PPG as follows: (1) On MLORD dataset: systolic phase onset (99.77 %, 0.35 % and 99.52 %, 0.75 %), systolic phase peak (99.80 %, 0.30 % and 99.56 %, 0.70 %), dicrotic notch (98.24 %, 2.63 % and 98.72 %, 1.96 %), and diastolic phase peak (98.59 %, 2.11 % and 98.88 %, 1.73 %); (2) On real time data: systolic phase onset (98.18 %, 3.03 % and 97.94 %, 3.43 %), systolic phase peak (98.22 %, 2.97 % and 97.74 %, 3.77 %), dicrotic notch (97.72 %, 3.80 % and 98.16 %, 3.07 %), and diastolic phase peak (98.04 %, 3.27 % and 98.08 %, 3.20 %). This tool has significant potential for supporting clinical utilization of ABP and PPG waveform features and for facilitating feature-based machine learning models for various clinical applications where features derived from these waveforms play a critical role.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信