Interrogating DNA methylation associated with Lewy body pathology in a cross brain-region and multi-cohort study.

Joshua Harvey, Jennifer Imm, Morteza Kouhsar, Adam R Smith, Byron Creese, Rebecca G Smith, Gregory Wheildon, Leonidas Chouliaras, Gemma Shireby, Zane Jaunmuktane, Eduardo De Pablo-Fernández, Thomas Warner, Debbie Lett, Djordje Gveric, Hannah Brooks, Johannes Attems, Alan Thomas, Emma Dempster, Clive Ballard, John T O'Brien, Dag Aarsland, Jonathan Mill, Lasse Pihlstrøm, Ehsan Pishva, Katie Lunnon
{"title":"Interrogating DNA methylation associated with Lewy body pathology in a cross brain-region and multi-cohort study.","authors":"Joshua Harvey, Jennifer Imm, Morteza Kouhsar, Adam R Smith, Byron Creese, Rebecca G Smith, Gregory Wheildon, Leonidas Chouliaras, Gemma Shireby, Zane Jaunmuktane, Eduardo De Pablo-Fernández, Thomas Warner, Debbie Lett, Djordje Gveric, Hannah Brooks, Johannes Attems, Alan Thomas, Emma Dempster, Clive Ballard, John T O'Brien, Dag Aarsland, Jonathan Mill, Lasse Pihlstrøm, Ehsan Pishva, Katie Lunnon","doi":"10.1101/2025.03.13.25323837","DOIUrl":null,"url":null,"abstract":"<p><p>Lewy body (LB) diseases are an umbrella term encompassing a range of neurodegenerative conditions all characterized by the hallmark of intra-neuronal α-synuclein associated with the development of motor and cognitive dysfunction. In this study, we have conducted a large meta-analysis of DNA methylation across multiple cortical brain regions, in relation to increasing burden of LB pathology. Utilizing a combined dataset of 1239 samples across 855 unique donors, we identified a set of 30 false discovery rate (FDR) significant loci that are differentially methylated in association with LB pathology, the most significant of which were located in <i>UBASH3B</i> and <i>PTAFR</i>, as well as an intergenic locus. Ontological enrichment analysis of our meta-analysis results highlights several neurologically relevant traits, including synaptic, inflammatory and vascular alterations. We leverage our summary statistics to compare DNA methylation signatures between different neurodegenerative pathologies and highlight a shared epigenetic profile across LB diseases, Alzheimer's disease and Huntington's disease, although the top-ranked loci show disease specificity. Finally, utilizing summary statistics from previous large-scale genome-wide association studies we report FDR significant enrichment of DNA methylation differences with respect to increasing LB pathology in the <i>SNCA</i> genomic region, a gene previously associated with Parkinson's disease and dementia with Lewy bodies.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11952592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.13.25323837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lewy body (LB) diseases are an umbrella term encompassing a range of neurodegenerative conditions all characterized by the hallmark of intra-neuronal α-synuclein associated with the development of motor and cognitive dysfunction. In this study, we have conducted a large meta-analysis of DNA methylation across multiple cortical brain regions, in relation to increasing burden of LB pathology. Utilizing a combined dataset of 1239 samples across 855 unique donors, we identified a set of 30 false discovery rate (FDR) significant loci that are differentially methylated in association with LB pathology, the most significant of which were located in UBASH3B and PTAFR, as well as an intergenic locus. Ontological enrichment analysis of our meta-analysis results highlights several neurologically relevant traits, including synaptic, inflammatory and vascular alterations. We leverage our summary statistics to compare DNA methylation signatures between different neurodegenerative pathologies and highlight a shared epigenetic profile across LB diseases, Alzheimer's disease and Huntington's disease, although the top-ranked loci show disease specificity. Finally, utilizing summary statistics from previous large-scale genome-wide association studies we report FDR significant enrichment of DNA methylation differences with respect to increasing LB pathology in the SNCA genomic region, a gene previously associated with Parkinson's disease and dementia with Lewy bodies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信