Precise perivascular space segmentation on magnetic resonance imaging from Human Connectome Project-Aging.

Yaqiong Chai, Hedong Zhang, Carlos Robles, Andrew Shinho Kim, Nada Janhanshad, Paul M Thompson, Ysbrand van der Werf, Eva M van Heese, Jiyoung Kim, Eun Yeon Joo, Leon Aksman, Kyung-Wook Kang, Jung-Won Shin, Abigail Trang, Jongmok Ha, Emily Lee, Yeonsil Moon, Hosung Kim
{"title":"Precise perivascular space segmentation on magnetic resonance imaging from Human Connectome Project-Aging.","authors":"Yaqiong Chai, Hedong Zhang, Carlos Robles, Andrew Shinho Kim, Nada Janhanshad, Paul M Thompson, Ysbrand van der Werf, Eva M van Heese, Jiyoung Kim, Eun Yeon Joo, Leon Aksman, Kyung-Wook Kang, Jung-Won Shin, Abigail Trang, Jongmok Ha, Emily Lee, Yeonsil Moon, Hosung Kim","doi":"10.1101/2025.03.19.25324269","DOIUrl":null,"url":null,"abstract":"<p><p>Perivascular spaces (PVS) are cerebrospinal fluid-filled tunnels around brain blood vessels, crucial for the functions of the glymphatic system. Changes in PVS have been linked to vascular diseases and aging, necessitating accurate segmentation for further study. PVS segmentation poses challenges due to their small size, varying MRI appearances, and the scarcity of annotated data. We present a finely segmented PVS dataset from T2-weighted MRI scans, sourced from the Human Connectome Project Aging (HCP-Aging), encompassing 200 subjects aged 30 to 100. Our approach utilizes a combination of unsupervised and deep learning techniques with manual corrections to ensure high accuracy. This dataset aims to facilitate research on PVS dynamics across different ages and to explore their link to cognitive decline. It also supports the development of advanced image segmentation algorithms, contributing to improved medical imaging automation and the early detection of neurodegenerative diseases.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.03.19.25324269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perivascular spaces (PVS) are cerebrospinal fluid-filled tunnels around brain blood vessels, crucial for the functions of the glymphatic system. Changes in PVS have been linked to vascular diseases and aging, necessitating accurate segmentation for further study. PVS segmentation poses challenges due to their small size, varying MRI appearances, and the scarcity of annotated data. We present a finely segmented PVS dataset from T2-weighted MRI scans, sourced from the Human Connectome Project Aging (HCP-Aging), encompassing 200 subjects aged 30 to 100. Our approach utilizes a combination of unsupervised and deep learning techniques with manual corrections to ensure high accuracy. This dataset aims to facilitate research on PVS dynamics across different ages and to explore their link to cognitive decline. It also supports the development of advanced image segmentation algorithms, contributing to improved medical imaging automation and the early detection of neurodegenerative diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信