Pan-PTM profiling identifies post-translational modifications associated with exceptional longevity and preservation of skeletal muscle function in Drosophila.

IF 4.1 Q2 GERIATRICS & GERONTOLOGY
Suresh Poudel, Chia-Lung Chuang, Him K Shrestha, Fabio Demontis
{"title":"Pan-PTM profiling identifies post-translational modifications associated with exceptional longevity and preservation of skeletal muscle function in Drosophila.","authors":"Suresh Poudel, Chia-Lung Chuang, Him K Shrestha, Fabio Demontis","doi":"10.1038/s41514-025-00215-2","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle weakness is a major component of age-associated frailty, but the underlying mechanisms are not completely understood. Drosophila has emerged as a useful model for studying skeletal muscle aging. In this organism, previous lab-based selection established strains with increased longevity and reduced age-associated muscle functional decline compared to a parental strain. Here, we have applied a computational pipeline (JUMPptm) for retrieving information on 8 post-translational modifications (PTMs) from the skeletal muscle proteomes of 2 long-lived strains and the corresponding parental strain in young and old age. This pan-PTM analysis identified 2470 modified sites (acetylation, carboxylation, deamidation, dihydroxylation, mono-methylation, oxidation, phosphorylation, and ubiquitination) in several classes of proteins, including evolutionarily conserved muscle contractile proteins and metabolic enzymes. PTM consensus sequences further highlight the amino acids that are enriched adjacent to the modified site, thus providing insight into the flanking residues that influence distinct PTMs. Altogether, these analyses identify PTMs associated with muscle functional decline during aging and that may underlie the longevity and negligible functional senescence of lab-evolved Drosophila strains.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"11 1","pages":"23"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-025-00215-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skeletal muscle weakness is a major component of age-associated frailty, but the underlying mechanisms are not completely understood. Drosophila has emerged as a useful model for studying skeletal muscle aging. In this organism, previous lab-based selection established strains with increased longevity and reduced age-associated muscle functional decline compared to a parental strain. Here, we have applied a computational pipeline (JUMPptm) for retrieving information on 8 post-translational modifications (PTMs) from the skeletal muscle proteomes of 2 long-lived strains and the corresponding parental strain in young and old age. This pan-PTM analysis identified 2470 modified sites (acetylation, carboxylation, deamidation, dihydroxylation, mono-methylation, oxidation, phosphorylation, and ubiquitination) in several classes of proteins, including evolutionarily conserved muscle contractile proteins and metabolic enzymes. PTM consensus sequences further highlight the amino acids that are enriched adjacent to the modified site, thus providing insight into the flanking residues that influence distinct PTMs. Altogether, these analyses identify PTMs associated with muscle functional decline during aging and that may underlie the longevity and negligible functional senescence of lab-evolved Drosophila strains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信