The protease ADAMTS5 controls ovarian cancer cell invasion, downstream of Rab25.

Shengnan Yuan, Rachele Bacchetti, Jamie Adams, Doretta Cuffaro, Armando Rossello, Elisa Nuti, Salvatore Santamaria, Elena Rainero
{"title":"The protease ADAMTS5 controls ovarian cancer cell invasion, downstream of Rab25.","authors":"Shengnan Yuan, Rachele Bacchetti, Jamie Adams, Doretta Cuffaro, Armando Rossello, Elisa Nuti, Salvatore Santamaria, Elena Rainero","doi":"10.1111/febs.70080","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is the 3rd most common gynaecological malignancy worldwide, with a 5-year survival rate of < 30% in the presence of metastasis. Metastatic progression is characterised by extensive remodelling of the extracellular matrix, primarily mediated by secreted proteases, including members of the 'a disintegrin and metalloprotease with thrombospondin motif' (ADAMTS) family. In particular, ADAMTS5 has been reported to be upregulated in ovarian malignant tumours compared to borderline and benign lesions, suggesting it might play a role in metastatic progression. Furthermore, it has been suggested that Rab25, a small GTPase of the Ras family, might upregulate ADAMTS5 expression in ovarian cancer cells. Here we demonstrated that Rab25 promotes ADAMTS5 expression through the activation of the nuclear factor κB (NF-κB) signalling pathway. Furthermore, ADAMTS5 was necessary and sufficient to stimulate ovarian cancer cell migration through complex fibroblast-secreted matrices, while selective ADAMTS5 inhibition prevented ovarian cancer spheroid invasion in 3D systems. Finally, in ovarian cancer patients, high ADAMTS5 expression correlated with poor prognosis. Altogether, these data identify ADAMTS5 as a novel regulator of ovarian cancer cell migration and invasion, suggesting it might represent a previously undescribed therapeutic target to prevent ovarian cancer metastasis.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer is the 3rd most common gynaecological malignancy worldwide, with a 5-year survival rate of < 30% in the presence of metastasis. Metastatic progression is characterised by extensive remodelling of the extracellular matrix, primarily mediated by secreted proteases, including members of the 'a disintegrin and metalloprotease with thrombospondin motif' (ADAMTS) family. In particular, ADAMTS5 has been reported to be upregulated in ovarian malignant tumours compared to borderline and benign lesions, suggesting it might play a role in metastatic progression. Furthermore, it has been suggested that Rab25, a small GTPase of the Ras family, might upregulate ADAMTS5 expression in ovarian cancer cells. Here we demonstrated that Rab25 promotes ADAMTS5 expression through the activation of the nuclear factor κB (NF-κB) signalling pathway. Furthermore, ADAMTS5 was necessary and sufficient to stimulate ovarian cancer cell migration through complex fibroblast-secreted matrices, while selective ADAMTS5 inhibition prevented ovarian cancer spheroid invasion in 3D systems. Finally, in ovarian cancer patients, high ADAMTS5 expression correlated with poor prognosis. Altogether, these data identify ADAMTS5 as a novel regulator of ovarian cancer cell migration and invasion, suggesting it might represent a previously undescribed therapeutic target to prevent ovarian cancer metastasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信