Developing a Computable Phenotype for Identifying Children, Adolescents, and Young Adults With Diabetes Using Electronic Health Records in the DiCAYA Network.

IF 16.6
Diabetes care Pub Date : 2025-06-01 DOI:10.2337/dc24-1972
Hui Shao, Lorna E Thorpe, Shahidul Islam, Jiang Bian, Yi Guo, Piaopiao Li, Sarah Bost, Dana Dabelea, Rebecca Conway, Tessa Crume, Brian S Schwartz, Annemarie G Hirsch, Katie S Allen, Brian E Dixon, Shaun J Grannis, Eva Lustigova, Kristi Reynolds, Marc Rosenman, Victor W Zhong, Anthony Wong, Pedro Rivera, Thuy Le, Meredith Akerman, Sarah Conderino, Anand Rajan, Angela D Liese, Caroline Rudisill, Jihad S Obeid, Joseph A Ewing, Charles Bailey, Eneida A Mendonca, Ibrahim Zaganjor, Deborah Rolka, Giuseppina Imperatore, Meda E Pavkov, Jasmin Divers
{"title":"Developing a Computable Phenotype for Identifying Children, Adolescents, and Young Adults With Diabetes Using Electronic Health Records in the DiCAYA Network.","authors":"Hui Shao, Lorna E Thorpe, Shahidul Islam, Jiang Bian, Yi Guo, Piaopiao Li, Sarah Bost, Dana Dabelea, Rebecca Conway, Tessa Crume, Brian S Schwartz, Annemarie G Hirsch, Katie S Allen, Brian E Dixon, Shaun J Grannis, Eva Lustigova, Kristi Reynolds, Marc Rosenman, Victor W Zhong, Anthony Wong, Pedro Rivera, Thuy Le, Meredith Akerman, Sarah Conderino, Anand Rajan, Angela D Liese, Caroline Rudisill, Jihad S Obeid, Joseph A Ewing, Charles Bailey, Eneida A Mendonca, Ibrahim Zaganjor, Deborah Rolka, Giuseppina Imperatore, Meda E Pavkov, Jasmin Divers","doi":"10.2337/dc24-1972","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The Diabetes in Children, Adolescents, and Young Adults (DiCAYA) network seeks to create a nationwide electronic health record (EHR)-based diabetes surveillance system. This study aimed to develop a DiCAYA-wide EHR-based computable phenotype (CP) to identify prevalent cases of diabetes.</p><p><strong>Research design and methods: </strong>We conducted network-wide chart reviews of 2,134 youth (aged <18 years) and 2,466 young adults (aged 18 to <45 years) among people with possible diabetes. Within this population, we compared the performance of three alternative CPs, using diabetes diagnoses determined by chart review as the gold standard. CPs were evaluated based on their accuracy in identifying diabetes and its subtype.</p><p><strong>Results: </strong>The final DiCAYA CP requires at least one diabetes diagnosis code from clinical encounters. Subsequently, diabetes type classification was based on the ratio of type 1 diabetes (T1D) or type 2 diabetes (T2D) diagnosis codes in the EHR. For both youth and young adults, the sensitivity, specificity, and positive and negative predictive values (PPV and NPV, respectively) in finding diabetes cases were >90%, except for the specificity and NPV in young adults, which were slightly lower at 83.8% and 80.6%, respectively. The final DiCAYA CP achieved >90% sensitivity, specificity, PPV, and NPV in classifying T1D, and demonstrated lower but robust performance in identifying T2D, consistently maintaining >80% across metrics.</p><p><strong>Conclusions: </strong>The DiCAYA CP effectively identifies overall diabetes and T1D in youth and young adults, though T2D misclassification in youth highlights areas for refinement. The simplicity of the DiCAYA CP enables broad deployment across diverse EHR systems for diabetes surveillance.</p>","PeriodicalId":93979,"journal":{"name":"Diabetes care","volume":" ","pages":"914-921"},"PeriodicalIF":16.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12094193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2337/dc24-1972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The Diabetes in Children, Adolescents, and Young Adults (DiCAYA) network seeks to create a nationwide electronic health record (EHR)-based diabetes surveillance system. This study aimed to develop a DiCAYA-wide EHR-based computable phenotype (CP) to identify prevalent cases of diabetes.

Research design and methods: We conducted network-wide chart reviews of 2,134 youth (aged <18 years) and 2,466 young adults (aged 18 to <45 years) among people with possible diabetes. Within this population, we compared the performance of three alternative CPs, using diabetes diagnoses determined by chart review as the gold standard. CPs were evaluated based on their accuracy in identifying diabetes and its subtype.

Results: The final DiCAYA CP requires at least one diabetes diagnosis code from clinical encounters. Subsequently, diabetes type classification was based on the ratio of type 1 diabetes (T1D) or type 2 diabetes (T2D) diagnosis codes in the EHR. For both youth and young adults, the sensitivity, specificity, and positive and negative predictive values (PPV and NPV, respectively) in finding diabetes cases were >90%, except for the specificity and NPV in young adults, which were slightly lower at 83.8% and 80.6%, respectively. The final DiCAYA CP achieved >90% sensitivity, specificity, PPV, and NPV in classifying T1D, and demonstrated lower but robust performance in identifying T2D, consistently maintaining >80% across metrics.

Conclusions: The DiCAYA CP effectively identifies overall diabetes and T1D in youth and young adults, though T2D misclassification in youth highlights areas for refinement. The simplicity of the DiCAYA CP enables broad deployment across diverse EHR systems for diabetes surveillance.

利用DiCAYA网络中的电子健康记录开发一种可计算的表型,用于识别患有糖尿病的儿童、青少年和年轻人。
目的:儿童、青少年和青年糖尿病(DiCAYA)网络寻求建立一个全国性的电子健康记录(EHR)为基础的糖尿病监测系统。本研究旨在建立一种基于ehr的DiCAYA-wide可计算表型(CP)来识别糖尿病的流行病例。研究设计和方法:我们对2134名青年(老年)进行了网络范围的图表回顾。结果:最终的DiCAYA CP需要至少一个来自临床接触的糖尿病诊断代码。随后,根据EHR中1型糖尿病(T1D)或2型糖尿病(T2D)诊断代码的比例进行糖尿病类型分类。对于青年和青壮年,发现糖尿病病例的敏感性、特异性和阳性和阴性预测值(分别为PPV和NPV)均为0.90%,但青壮年的特异性和NPV略低,分别为83.8%和80.6%。最终的DiCAYA CP在分类T1D方面的灵敏度、特异性、PPV和NPV均达到了bb0.90%,在识别T2D方面表现出较低但稳健的性能,在各指标上始终保持bb0.80%。结论:DiCAYA CP有效地识别了青少年和年轻人的整体糖尿病和T1D,尽管青少年的T2D错误分类突出了需要改进的领域。DiCAYA CP的简单性使其能够广泛应用于糖尿病监测的各种电子病历系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
29.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信