{"title":"Layered Double Hydroxide Reshapes the Immune Microenvironment of Rheumatoid Arthritis through Small Mothers against Decapentaplegic 5.","authors":"Dengju Li, Yawei Sun, Guangxian Liu, Changxing Liu, Guojiang Zhang, Haojue Wang, Shui Sun, Senbo An","doi":"10.34133/bmr.0176","DOIUrl":null,"url":null,"abstract":"<p><p>Persistent synovitis is a pivotal pathological feature of rheumatoid arthritis (RA). However, the current rheumatoid drugs are accompanied by severe side effects and have limited anti-inflammatory capabilities. In this work, we designed a bioactive material-folic acid modified layered double hydroxides (FA-LDH), aiming at targeting M1 macrophages and modulating macrophage repolarization. The in vitro experiment showed that FA-LDH mitigated the release of proinflammatory cytokines and promoted the expression of M2 macrophage markers. In terms of the action mechanism, FA-LDH modulated the nucleocytoplasmic transport of the small mothers against decapentaplegic 5 (Smad5) protein by adjusting the pH within the immune microenvironment. Subsequently, relying on the interaction between phospho-Smad5 (pSmad5) and p65, the nuclear factor kappa B signaling pathway was down-regulated through inhibiting nuclear transport of p65. Additionally, FA-LDH exhibited excellent targeting capability toward M1 macrophages and strong accumulation capacity in inflamed joints. In vivo experiment showed that FA-LDH could relieve swelling of limbs, reduce the infiltration of inflammatory cells, and protect joint cartilage and subchondral bone structure in collagen-induced arthritis mice. In summary, this work introduces a strategy for utilizing bioactive FA-LDH in the treatment of RA, highlighting the potential of FA-LDH to alleviate inflammation and reshape the immune microenvironment through the pSmad5/p65 axis.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0176"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951257/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Persistent synovitis is a pivotal pathological feature of rheumatoid arthritis (RA). However, the current rheumatoid drugs are accompanied by severe side effects and have limited anti-inflammatory capabilities. In this work, we designed a bioactive material-folic acid modified layered double hydroxides (FA-LDH), aiming at targeting M1 macrophages and modulating macrophage repolarization. The in vitro experiment showed that FA-LDH mitigated the release of proinflammatory cytokines and promoted the expression of M2 macrophage markers. In terms of the action mechanism, FA-LDH modulated the nucleocytoplasmic transport of the small mothers against decapentaplegic 5 (Smad5) protein by adjusting the pH within the immune microenvironment. Subsequently, relying on the interaction between phospho-Smad5 (pSmad5) and p65, the nuclear factor kappa B signaling pathway was down-regulated through inhibiting nuclear transport of p65. Additionally, FA-LDH exhibited excellent targeting capability toward M1 macrophages and strong accumulation capacity in inflamed joints. In vivo experiment showed that FA-LDH could relieve swelling of limbs, reduce the infiltration of inflammatory cells, and protect joint cartilage and subchondral bone structure in collagen-induced arthritis mice. In summary, this work introduces a strategy for utilizing bioactive FA-LDH in the treatment of RA, highlighting the potential of FA-LDH to alleviate inflammation and reshape the immune microenvironment through the pSmad5/p65 axis.