Role of Biosynthetic Gene Cluster BGC3 in the Cariogenic Virulence of Streptococcus mutans.

Jing Yi Yang, Yi Xin Zhang, Yu Wei Zhang, Ying Chen, Min Di Xu, Dan Dan Wang, Yi Hua Chen, Yi Xiang Wang, Bin Xia
{"title":"Role of Biosynthetic Gene Cluster BGC3 in the Cariogenic Virulence of Streptococcus mutans.","authors":"Jing Yi Yang, Yi Xin Zhang, Yu Wei Zhang, Ying Chen, Min Di Xu, Dan Dan Wang, Yi Hua Chen, Yi Xiang Wang, Bin Xia","doi":"10.3290/j.cjdr.b6097621","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the role of the biosynthetic gene cluster BGC3 of Streptococcus mutans (S. mutans) in the process of dental caries.</p><p><strong>Methods: </strong>BGC3 and ∆BGC3 S. mutans strains were constructed and their growth curves were evaluated. Acid production capacity was assessed by evaluating pH reduction levels over identical culture periods. The survival of bacteria in phosphate citrate buffer solution (pH 3.0) was quantified. The expression levels of virulence genes (atpF, gtfC, gtfD, spaP, vicR and ftf) were analysed using the qPCR. Co-culture experiments were conducted to evaluate bacterial adaptability. Bacterial viability was determined by microscopical examination of live/dead staining.</p><p><strong>Results: </strong>Deletion of BGC3 did not significantly impact S. mutans growth or acid production in biofilms. The ∆BGC3 strain exhibited enhanced acid resistance and higher expression levels of virulence genes compared to the wild type. In addition, ∆BGC3 exhibited superior bacterial viability in the co-culture system.</p><p><strong>Conclusion: </strong>BGC3 affected the acid resistance and expression of caries-related genes in S. mutans. The BGC3 knockout strain exhibited a more robust survival capability than the wild-type strain.</p>","PeriodicalId":74983,"journal":{"name":"The Chinese journal of dental research : the official journal of the Scientific Section of the Chinese Stomatological Association (CSA)","volume":"28 1","pages":"55-62"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Chinese journal of dental research : the official journal of the Scientific Section of the Chinese Stomatological Association (CSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3290/j.cjdr.b6097621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To investigate the role of the biosynthetic gene cluster BGC3 of Streptococcus mutans (S. mutans) in the process of dental caries.

Methods: BGC3 and ∆BGC3 S. mutans strains were constructed and their growth curves were evaluated. Acid production capacity was assessed by evaluating pH reduction levels over identical culture periods. The survival of bacteria in phosphate citrate buffer solution (pH 3.0) was quantified. The expression levels of virulence genes (atpF, gtfC, gtfD, spaP, vicR and ftf) were analysed using the qPCR. Co-culture experiments were conducted to evaluate bacterial adaptability. Bacterial viability was determined by microscopical examination of live/dead staining.

Results: Deletion of BGC3 did not significantly impact S. mutans growth or acid production in biofilms. The ∆BGC3 strain exhibited enhanced acid resistance and higher expression levels of virulence genes compared to the wild type. In addition, ∆BGC3 exhibited superior bacterial viability in the co-culture system.

Conclusion: BGC3 affected the acid resistance and expression of caries-related genes in S. mutans. The BGC3 knockout strain exhibited a more robust survival capability than the wild-type strain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信