Bayesian Workflow for Generative Modeling in Computational Psychiatry.

Computational psychiatry (Cambridge, Mass.) Pub Date : 2025-03-25 eCollection Date: 2025-01-01 DOI:10.5334/cpsy.116
Alexander J Hess, Sandra Iglesias, Laura Köchli, Stephanie Marino, Matthias Müller-Schrader, Lionel Rigoux, Christoph Mathys, Olivia K Harrison, Jakob Heinzle, Stefan Frässle, Klaas Enno Stephan
{"title":"Bayesian Workflow for Generative Modeling in Computational Psychiatry.","authors":"Alexander J Hess, Sandra Iglesias, Laura Köchli, Stephanie Marino, Matthias Müller-Schrader, Lionel Rigoux, Christoph Mathys, Olivia K Harrison, Jakob Heinzle, Stefan Frässle, Klaas Enno Stephan","doi":"10.5334/cpsy.116","DOIUrl":null,"url":null,"abstract":"<p><p>Computational (generative) modelling of behaviour has considerable potential for clinical applications. In order to unlock the potential of generative models, reliable statistical inference is crucial. For this, Bayesian workflow has been suggested which, however, has rarely been applied in Translational Neuromodeling and Computational Psychiatry (TN/CP) so far. Here, we present a worked example of Bayesian workflow in the context of a typical application scenario for TN/CP. This application example uses Hierarchical Gaussian Filter (HGF) models, a family of computational models for hierarchical Bayesian belief updating. When equipped with a suitable response model, HGF models can be fit to behavioural data from cognitive tasks; these data frequently consist of binary responses and are typically univariate. This poses challenges for statistical inference due to the limited information contained in such data. We present a novel set of response models that allow for simultaneous inference from multivariate (here: two) behavioural data types. Using both simulations and empirical data from a speed-incentivised associative reward learning (SPIRL) task, we show that models harnessing information from two different data streams (binary responses and continuous response times) ensure robust inference (specifically, identifiability of parameters and models). Moreover, we find a linear relationship between log-transformed response times in the SPIRL task and participants' uncertainty about the outcome. Our analysis illustrates the benefits of Bayesian workflow for a typical use case in TN/CP. We argue that adopting Bayesian workflow for generative modelling helps increase the transparency and robustness of results, which in turn is of fundamental importance for the long-term success of TN/CP.</p>","PeriodicalId":72664,"journal":{"name":"Computational psychiatry (Cambridge, Mass.)","volume":"9 1","pages":"76-99"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational psychiatry (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/cpsy.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computational (generative) modelling of behaviour has considerable potential for clinical applications. In order to unlock the potential of generative models, reliable statistical inference is crucial. For this, Bayesian workflow has been suggested which, however, has rarely been applied in Translational Neuromodeling and Computational Psychiatry (TN/CP) so far. Here, we present a worked example of Bayesian workflow in the context of a typical application scenario for TN/CP. This application example uses Hierarchical Gaussian Filter (HGF) models, a family of computational models for hierarchical Bayesian belief updating. When equipped with a suitable response model, HGF models can be fit to behavioural data from cognitive tasks; these data frequently consist of binary responses and are typically univariate. This poses challenges for statistical inference due to the limited information contained in such data. We present a novel set of response models that allow for simultaneous inference from multivariate (here: two) behavioural data types. Using both simulations and empirical data from a speed-incentivised associative reward learning (SPIRL) task, we show that models harnessing information from two different data streams (binary responses and continuous response times) ensure robust inference (specifically, identifiability of parameters and models). Moreover, we find a linear relationship between log-transformed response times in the SPIRL task and participants' uncertainty about the outcome. Our analysis illustrates the benefits of Bayesian workflow for a typical use case in TN/CP. We argue that adopting Bayesian workflow for generative modelling helps increase the transparency and robustness of results, which in turn is of fundamental importance for the long-term success of TN/CP.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信