{"title":"Study of the brain function characteristics in children with cerebral palsy during walking using functional near-infrared spectroscopy.","authors":"Tengyu Zhang, Gongcheng Xu, Yajie Chang, Zichao Nie, Aiping Sun, Zengyong Li, Ping Xie","doi":"10.1117/1.NPh.12.2.025004","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Abnormal gait of children with cerebral palsy (CP) is caused by brain damage or developmental defects, exploring the brain's functional characteristics and regulatory mechanisms is essential for rehabilitation.</p><p><strong>Aim: </strong>We aim to study the brain function characteristics in children with CP during walking.</p><p><strong>Approach: </strong>The cortical activation, functional connectivity, information flow, and dynamic state transitions of 17 children with CP and 13 healthy children (HC) were analyzed in the resting and walking states.</p><p><strong>Results: </strong>The motor cortex (MC) of HC is significantly activated in the walking state, whereas both the prefrontal cortex (PFC) and MC of children with CP are significantly activated. The resting brain functional connectivity of children with CP decreased and showed higher global efficiency and modularity and lower clustering coefficients and local efficiency. During walking, the brain network of children with CP was difficult to maintain a stable global high-connectivity state so the local high-connectivity state became the main connectivity state. For children with CP, more brain resources were allocated to the non-dominant MC during walking, whereas more brain resources were allocated to the dominant MC in HC.</p><p><strong>Conclusions: </strong>These indicators reflect the characteristics of brain activation, network connectivity, and information regulation in children with CP, which provide the theoretical basis for targeted rehabilitation treatment.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 2","pages":"025004"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.2.025004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: Abnormal gait of children with cerebral palsy (CP) is caused by brain damage or developmental defects, exploring the brain's functional characteristics and regulatory mechanisms is essential for rehabilitation.
Aim: We aim to study the brain function characteristics in children with CP during walking.
Approach: The cortical activation, functional connectivity, information flow, and dynamic state transitions of 17 children with CP and 13 healthy children (HC) were analyzed in the resting and walking states.
Results: The motor cortex (MC) of HC is significantly activated in the walking state, whereas both the prefrontal cortex (PFC) and MC of children with CP are significantly activated. The resting brain functional connectivity of children with CP decreased and showed higher global efficiency and modularity and lower clustering coefficients and local efficiency. During walking, the brain network of children with CP was difficult to maintain a stable global high-connectivity state so the local high-connectivity state became the main connectivity state. For children with CP, more brain resources were allocated to the non-dominant MC during walking, whereas more brain resources were allocated to the dominant MC in HC.
Conclusions: These indicators reflect the characteristics of brain activation, network connectivity, and information regulation in children with CP, which provide the theoretical basis for targeted rehabilitation treatment.
期刊介绍:
At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.