Benedita K L Feron, Timothy Gomez, Natalie C Youens, Nourhan A M Mahmoud, Hadeer K S Abdelrahman, Joachim J Bugert, Simon C W Richardson
{"title":"Antiviral siRNA delivered using attenuated, anthrax toxin protects cells from the cytopathic effects of Zika virus.","authors":"Benedita K L Feron, Timothy Gomez, Natalie C Youens, Nourhan A M Mahmoud, Hadeer K S Abdelrahman, Joachim J Bugert, Simon C W Richardson","doi":"10.1007/s11262-025-02152-4","DOIUrl":null,"url":null,"abstract":"<p><p>Curative drugs are needed for the treatment of viral infections. Small interfering (si)RNA offer such a prospect but require the development of safe, effective and non-hepatotropic subcellular delivery systems. Here, 5 candidate siRNA molecules targeting defined sequences within the Zika Virus (ZIKV) genome were assayed for their ability to reduce ZIKV induced cytopathic effects in vitro. The protection of Huh-7 cells from ZIKV cytopathic effects was recorded after electroporation and the siRNA Feron-Zv2, resulting in 122.7 ± 5.3% cell viability (n = 3 ± standard error of the mean (SEM), 100 nM siRNA) after exposure to ZIKV relative to a virus treated control (35.2 ± 7.1% cell viability (n = 3 ± SEM)). Protection of BHK-21 cells was recorded after transfection with an attenuated anthrax toxin containing an RNA binding domain. Treatment with Feron-Zv4 resulted in 75.1 ± 2.9% cell viability (n = 3 ± SEM, 25 nM siRNA) after exposure to ZIKV. This protection was mirrored by a system containing octameric PA where a maximum of 86.2 ± 4.4% cell viability was reported (n = 3 ± SEM, 75 nM siRNA) after treatment with Feron-Zv2. Scrambled siRNA afforded no measurable protection. Here we report for the first time that siRNA delivered by either attenuated anthrax toxin or octamer forming ATx can protect mammalian cells from ZIKV cytopathic effects.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-025-02152-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Curative drugs are needed for the treatment of viral infections. Small interfering (si)RNA offer such a prospect but require the development of safe, effective and non-hepatotropic subcellular delivery systems. Here, 5 candidate siRNA molecules targeting defined sequences within the Zika Virus (ZIKV) genome were assayed for their ability to reduce ZIKV induced cytopathic effects in vitro. The protection of Huh-7 cells from ZIKV cytopathic effects was recorded after electroporation and the siRNA Feron-Zv2, resulting in 122.7 ± 5.3% cell viability (n = 3 ± standard error of the mean (SEM), 100 nM siRNA) after exposure to ZIKV relative to a virus treated control (35.2 ± 7.1% cell viability (n = 3 ± SEM)). Protection of BHK-21 cells was recorded after transfection with an attenuated anthrax toxin containing an RNA binding domain. Treatment with Feron-Zv4 resulted in 75.1 ± 2.9% cell viability (n = 3 ± SEM, 25 nM siRNA) after exposure to ZIKV. This protection was mirrored by a system containing octameric PA where a maximum of 86.2 ± 4.4% cell viability was reported (n = 3 ± SEM, 75 nM siRNA) after treatment with Feron-Zv2. Scrambled siRNA afforded no measurable protection. Here we report for the first time that siRNA delivered by either attenuated anthrax toxin or octamer forming ATx can protect mammalian cells from ZIKV cytopathic effects.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.