{"title":"Human neuron chimeric mice reveal impairment of DVL-1-mediated neuronal migration by sevoflurane and potential treatment by rTMS.","authors":"Youyi Zhao, Ya Zhao, Lirong Liang, Andi Chen, Yuqian Li, Ke Liu, Rougang Xie, Honghui Mao, Boyang Ren, Bosong Huang, Changhong Shi, Zhicheng Shao, Shengxi Wu, Yazhou Wang, Hui Zhang","doi":"10.1038/s12276-025-01425-0","DOIUrl":null,"url":null,"abstract":"<p><p>Whether early exposure to general anesthetics hurts human brain development is still under discussion. Animal studies have documented multiple neurotoxicities of repeated/prolonged exposure to sevoflurane (Sev, a commonly used pediatric anesthetic) at the neonatal stage. Its effects on human neural development remain elusive. Here, by investigating neural progenitor cells derived from two human embryonic stem cell lines, human cerebral organoids and human neuronal chimeric mice, we found that, although Sev inhibits neuronal differentiation and synaptogenesis of human neural progenitor cells in vitro, it only inhibits human neuronal migration in vivo. Chemogenetic activation of human neurons rescued the defects of cell migration and social dysfunction of Sev-pretreated human neuronal chimeric mice. Mechanistically, Sev inhibits DVL-1/Ca<sup>2+</sup> signaling and multiple cell migration-related genes. Overexpressing DVL-1 enhanced the Ca<sup>2+</sup> response, neuronal migration and social function of Sev-pretreated chimeric mice. Furthermore, specific modulation of human neurons by high-frequency transcranial magnetic stimulation not only activated DVL-1/Ca<sup>2+</sup> signaling but also improved human neuronal migration and social function in chimeric mice. Our data demonstrate that early Sev exposure is toxic to human neuronal migration via inhibiting DVL-1 signaling and that transcranial magnetic stimulation could be potentially therapeutic.</p>","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s12276-025-01425-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Whether early exposure to general anesthetics hurts human brain development is still under discussion. Animal studies have documented multiple neurotoxicities of repeated/prolonged exposure to sevoflurane (Sev, a commonly used pediatric anesthetic) at the neonatal stage. Its effects on human neural development remain elusive. Here, by investigating neural progenitor cells derived from two human embryonic stem cell lines, human cerebral organoids and human neuronal chimeric mice, we found that, although Sev inhibits neuronal differentiation and synaptogenesis of human neural progenitor cells in vitro, it only inhibits human neuronal migration in vivo. Chemogenetic activation of human neurons rescued the defects of cell migration and social dysfunction of Sev-pretreated human neuronal chimeric mice. Mechanistically, Sev inhibits DVL-1/Ca2+ signaling and multiple cell migration-related genes. Overexpressing DVL-1 enhanced the Ca2+ response, neuronal migration and social function of Sev-pretreated chimeric mice. Furthermore, specific modulation of human neurons by high-frequency transcranial magnetic stimulation not only activated DVL-1/Ca2+ signaling but also improved human neuronal migration and social function in chimeric mice. Our data demonstrate that early Sev exposure is toxic to human neuronal migration via inhibiting DVL-1 signaling and that transcranial magnetic stimulation could be potentially therapeutic.
期刊介绍:
Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.