Advancing CRISPR genome editing into gene therapy clinical trials: progress and future prospects.

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Busra Cetin, Fulya Erendor, Yunus Emre Eksi, Ahter D Sanlioglu, Salih Sanlioglu
{"title":"Advancing CRISPR genome editing into gene therapy clinical trials: progress and future prospects.","authors":"Busra Cetin, Fulya Erendor, Yunus Emre Eksi, Ahter D Sanlioglu, Salih Sanlioglu","doi":"10.1017/erm.2025.10","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing has recently evolved from a theoretical concept to a powerful and versatile set of tools. The discovery and implementation of CRISPR-Cas9 technology have propelled the field further into a new era. This RNA-guided system allows for specific modification of target genes, offering high accuracy and efficiency. Encouraging results are being announced in clinical trials employed in conditions like sickle cell disease (SCD) and transfusion-dependent beta-thalassaemia (TDT). The path finally led the way to the recent FDA approval of the first gene therapy drug utilising the CRISPR/Cas9 system to edit autologous CD34+ haematopoietic stem cells in SCD patients (Casgevy). Ongoing research explores the potential of CRISPR technology for cancer therapies, HIV treatment and other complex diseases. Despite its remarkable potential, CRISPR technology faces challenges such as off-target effects, suboptimal delivery systems, long-term safety concerns, scalability, ethical dilemmas and potential repercussions of genetic alterations, particularly in the case of germline editing. Here, we examine the transformative role of CRISPR technologies, including base editing and prime editing approaches, in modifying the genetic and epigenetic codes in the human genome and provide a comprehensive focus, particularly on relevant clinical applications, to unlock the full potential and challenges of gene editing.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":" ","pages":"e16"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12094669/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Reviews in Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/erm.2025.10","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome editing has recently evolved from a theoretical concept to a powerful and versatile set of tools. The discovery and implementation of CRISPR-Cas9 technology have propelled the field further into a new era. This RNA-guided system allows for specific modification of target genes, offering high accuracy and efficiency. Encouraging results are being announced in clinical trials employed in conditions like sickle cell disease (SCD) and transfusion-dependent beta-thalassaemia (TDT). The path finally led the way to the recent FDA approval of the first gene therapy drug utilising the CRISPR/Cas9 system to edit autologous CD34+ haematopoietic stem cells in SCD patients (Casgevy). Ongoing research explores the potential of CRISPR technology for cancer therapies, HIV treatment and other complex diseases. Despite its remarkable potential, CRISPR technology faces challenges such as off-target effects, suboptimal delivery systems, long-term safety concerns, scalability, ethical dilemmas and potential repercussions of genetic alterations, particularly in the case of germline editing. Here, we examine the transformative role of CRISPR technologies, including base editing and prime editing approaches, in modifying the genetic and epigenetic codes in the human genome and provide a comprehensive focus, particularly on relevant clinical applications, to unlock the full potential and challenges of gene editing.

推进CRISPR基因组编辑进入基因治疗临床试验:进展和未来展望。
基因组编辑最近已经从一个理论概念发展成为一套强大而通用的工具。CRISPR-Cas9技术的发现和实施将该领域进一步推向了一个新时代。这种rna引导的系统允许对靶基因进行特异性修饰,提供高精度和高效率。在镰状细胞病(SCD)和输血依赖性β -地中海贫血(TDT)等疾病的临床试验中宣布了令人鼓舞的结果。这条道路最终导致FDA最近批准了首个利用CRISPR/Cas9系统编辑SCD患者自体CD34+造血干细胞的基因治疗药物(Casgevy)。正在进行的研究探索CRISPR技术在癌症治疗、艾滋病毒治疗和其他复杂疾病方面的潜力。尽管具有巨大的潜力,CRISPR技术仍面临着一些挑战,如脱靶效应、次优传递系统、长期安全问题、可扩展性、伦理困境以及基因改变的潜在影响,特别是在生殖系编辑的情况下。在这里,我们研究了CRISPR技术的变革作用,包括碱基编辑和引体编辑方法,在修改人类基因组中的遗传和表观遗传密码方面,并提供了一个全面的重点,特别是在相关的临床应用上,以释放基因编辑的全部潜力和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Reviews in Molecular Medicine
Expert Reviews in Molecular Medicine BIOCHEMISTRY & MOLECULAR BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
7.40
自引率
1.60%
发文量
45
期刊介绍: Expert Reviews in Molecular Medicine is an innovative online journal featuring authoritative and timely Reviews covering gene therapy, immunotherapeutics, drug design, vaccines, genetic testing, pathogenesis, microbiology, genomics, molecular epidemiology and diagnostic techniques. We especially welcome reviews on translational aspects of molecular medicine, particularly those related to the application of new understanding of the molecular basis of disease to experimental medicine and clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信