Alexey I Ilovaisky, Alexander M Scherbakov, Dumitru Miciurov, Elena I Chernoburova, Valentina M Merkulova, Fedor B Bogdanov, Diana I Salnikova, Danila V Sorokin, Mikhail A Krasil'nikov, Eugene I Bozhenko, Igor V Zavarzin, Alexander O Terent'ev
{"title":"Secosteroid - 1,3,4-Oxadiazole Hybrids: Synthesis and Evaluation of Their Activity Against Hormone-Dependent Breast Cancer Cells.","authors":"Alexey I Ilovaisky, Alexander M Scherbakov, Dumitru Miciurov, Elena I Chernoburova, Valentina M Merkulova, Fedor B Bogdanov, Diana I Salnikova, Danila V Sorokin, Mikhail A Krasil'nikov, Eugene I Bozhenko, Igor V Zavarzin, Alexander O Terent'ev","doi":"10.1016/j.jsbmb.2025.106745","DOIUrl":null,"url":null,"abstract":"<p><p>This study focused on the synthesis of secosteroids with good antiproliferative properties against hormone-dependent breast cancer. A straightforward and efficient method for synthesizing secosteroid - 1,3,4-oxadiazole hybrids was developed starting from 13α-hydroxy-3-methoxy-13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazide. The cyclization of hydrazide moiety with CS<sub>2</sub> into 1,3,4-oxadiazole-2(3H)-thione fragment followed by sulfur alkylation resulted in the formation of various secosteroid - 2-mercapto-1,3,4-oxadiazole hybrids. These novel compounds were evaluated for their antiproliferative activity against the hormone-dependent human breast cancer cell line MCF-7. Among the synthesized hybrids, compounds 3i, 3o, and 3q displayed notable antiproliferative effects, with IC<sub>50</sub> values ranging from 6.5 to 8.9µM, comparable to the reference drug cisplatin. Furthermore, compound 3i showed minimal toxicity toward non-cancerous hFB-hTERT fibroblasts, indicating high selectivity. Compounds 3o and 3q exhibited antiestrogenic activity. Additionally, their effects on PARP and Bcl-2 suggest a pro-apoptotic mechanism of action. These findings highlight the potential of secosteroidal hybrids as promising candidates for the development of new anti-breast cancer agents targeting ERα and apoptosis pathways.</p>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":" ","pages":"106745"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jsbmb.2025.106745","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focused on the synthesis of secosteroids with good antiproliferative properties against hormone-dependent breast cancer. A straightforward and efficient method for synthesizing secosteroid - 1,3,4-oxadiazole hybrids was developed starting from 13α-hydroxy-3-methoxy-13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazide. The cyclization of hydrazide moiety with CS2 into 1,3,4-oxadiazole-2(3H)-thione fragment followed by sulfur alkylation resulted in the formation of various secosteroid - 2-mercapto-1,3,4-oxadiazole hybrids. These novel compounds were evaluated for their antiproliferative activity against the hormone-dependent human breast cancer cell line MCF-7. Among the synthesized hybrids, compounds 3i, 3o, and 3q displayed notable antiproliferative effects, with IC50 values ranging from 6.5 to 8.9µM, comparable to the reference drug cisplatin. Furthermore, compound 3i showed minimal toxicity toward non-cancerous hFB-hTERT fibroblasts, indicating high selectivity. Compounds 3o and 3q exhibited antiestrogenic activity. Additionally, their effects on PARP and Bcl-2 suggest a pro-apoptotic mechanism of action. These findings highlight the potential of secosteroidal hybrids as promising candidates for the development of new anti-breast cancer agents targeting ERα and apoptosis pathways.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.