The inattentional rhythm in audition.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Troby Ka-Yan Lui, Eva Boglietti, Benedikt Zoefel
{"title":"The inattentional rhythm in audition.","authors":"Troby Ka-Yan Lui, Eva Boglietti, Benedikt Zoefel","doi":"10.1523/JNEUROSCI.1544-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of temporally unpredictable visual targets depends on the preceding phase of alpha oscillations (∼7-12 Hz). In audition, however, such an effect seemed to be absent. Due to the transient nature of its input, the auditory system might be particularly vulnerable to information loss that occurs if relevant information coincides with the low excitability phase of the oscillation. We therefore hypothesised that effects of oscillatory phase in audition will be restored if auditory events are made task-irrelevant and information loss can be tolerated. To this end, we collected electroencephalography (EEG) data from 29 human participants (21F) while they detected pure tones at one sound frequency and ignored others. Confirming our hypothesis, we found that the neural response to task-irrelevant but not to task-relevant tones depends on the pre-stimulus phase of neural oscillations. Alpha oscillations modulated early stages of stimulus processing, whereas theta oscillations (∼3-7 Hz) affected later components, possibly related to distractor inhibition. We also found evidence that alpha oscillations alternate between sound frequencies during divided attention. Together, our results suggest that the efficacy of auditory oscillations depends on the context they operate in, and demonstrate how they can be employed in a system that heavily relies on information unfolding over time.<b>Significance Statement</b> The phase of neural oscillations shapes visual processing, but such an effect seemed absent in the auditory system when confronted with temporally unpredictable events. We here provide evidence that oscillatory mechanisms in audition critically depend on the degree of possible information loss during the oscillation's low excitability phase, possibly reflecting a mechanism to cope with the rapid sensory dynamics that audition is normally exposed to. We reach this conclusion by demonstrating that the processing of task-irrelevant but not task-relevant tones depends on the pre-stimulus phase of neural oscillations during selective attention. During divided attention, cycles of alpha oscillations seemed to alternate between possible acoustic targets similar to what was observed in vision, suggesting an attentional process that generalises across modalities.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1544-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of temporally unpredictable visual targets depends on the preceding phase of alpha oscillations (∼7-12 Hz). In audition, however, such an effect seemed to be absent. Due to the transient nature of its input, the auditory system might be particularly vulnerable to information loss that occurs if relevant information coincides with the low excitability phase of the oscillation. We therefore hypothesised that effects of oscillatory phase in audition will be restored if auditory events are made task-irrelevant and information loss can be tolerated. To this end, we collected electroencephalography (EEG) data from 29 human participants (21F) while they detected pure tones at one sound frequency and ignored others. Confirming our hypothesis, we found that the neural response to task-irrelevant but not to task-relevant tones depends on the pre-stimulus phase of neural oscillations. Alpha oscillations modulated early stages of stimulus processing, whereas theta oscillations (∼3-7 Hz) affected later components, possibly related to distractor inhibition. We also found evidence that alpha oscillations alternate between sound frequencies during divided attention. Together, our results suggest that the efficacy of auditory oscillations depends on the context they operate in, and demonstrate how they can be employed in a system that heavily relies on information unfolding over time.Significance Statement The phase of neural oscillations shapes visual processing, but such an effect seemed absent in the auditory system when confronted with temporally unpredictable events. We here provide evidence that oscillatory mechanisms in audition critically depend on the degree of possible information loss during the oscillation's low excitability phase, possibly reflecting a mechanism to cope with the rapid sensory dynamics that audition is normally exposed to. We reach this conclusion by demonstrating that the processing of task-irrelevant but not task-relevant tones depends on the pre-stimulus phase of neural oscillations during selective attention. During divided attention, cycles of alpha oscillations seemed to alternate between possible acoustic targets similar to what was observed in vision, suggesting an attentional process that generalises across modalities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信