{"title":"Opportunities and Challenges for Large Language Models in Primary Health Care.","authors":"Hongyang Qin, Yuling Tong","doi":"10.1177/21501319241312571","DOIUrl":null,"url":null,"abstract":"<p><p>Primary Health Care (PHC) is the cornerstone of the global health care system and the primary objective for achieving universal health coverage. China's PHC system faces several challenges, including uneven distribution of medical resources, a lack of qualified primary healthcare personnel, an ineffective implementation of the hierarchical medical treatment, and a serious situation regarding the prevention and control of chronic diseases. The rapid advancement of artificial intelligence (AI) technology, large language models (LLMs) demonstrate significant potential in the medical field with their powerful natural language processing and reasoning capabilities, especially in PHC. This review focuses on the various potential applications of LLMs in China's PHC, including health promotion and disease prevention, medical consultation and health management, diagnosis and triage, chronic disease management, and mental health support. Additionally, pragmatic obstacles were analyzed, such as transparency, outcomes misrepresentation, privacy concerns, and social biases. Future development should emphasize interdisciplinary collaboration and resource sharing, ongoing improvements in health equity, and innovative advancements in medical large models. There is a demand to establish a safe, effective, equitable, and flexible ethical and legal framework, along with a robust accountability mechanism, to support the achievement of universal health coverage.</p>","PeriodicalId":46723,"journal":{"name":"Journal of Primary Care and Community Health","volume":"16 ","pages":"21501319241312571"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Primary Care and Community Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/21501319241312571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PRIMARY HEALTH CARE","Score":null,"Total":0}
引用次数: 0
Abstract
Primary Health Care (PHC) is the cornerstone of the global health care system and the primary objective for achieving universal health coverage. China's PHC system faces several challenges, including uneven distribution of medical resources, a lack of qualified primary healthcare personnel, an ineffective implementation of the hierarchical medical treatment, and a serious situation regarding the prevention and control of chronic diseases. The rapid advancement of artificial intelligence (AI) technology, large language models (LLMs) demonstrate significant potential in the medical field with their powerful natural language processing and reasoning capabilities, especially in PHC. This review focuses on the various potential applications of LLMs in China's PHC, including health promotion and disease prevention, medical consultation and health management, diagnosis and triage, chronic disease management, and mental health support. Additionally, pragmatic obstacles were analyzed, such as transparency, outcomes misrepresentation, privacy concerns, and social biases. Future development should emphasize interdisciplinary collaboration and resource sharing, ongoing improvements in health equity, and innovative advancements in medical large models. There is a demand to establish a safe, effective, equitable, and flexible ethical and legal framework, along with a robust accountability mechanism, to support the achievement of universal health coverage.