Yang-Fei Yi, Zi-Qi Fan, Can Liu, Yi-Tong Ding, Yao Chen, Jie Wen, Xiao-Hong Jian, Yu-Fei Li
{"title":"Immunomodulatory effects and clinical application of exosomes derived from mesenchymal stem cells.","authors":"Yang-Fei Yi, Zi-Qi Fan, Can Liu, Yi-Tong Ding, Yao Chen, Jie Wen, Xiao-Hong Jian, Yu-Fei Li","doi":"10.4252/wjsc.v17.i3.103560","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes (Exos) are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication. They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions. Exos derived from mesenchymal stem cells (MSCs) have significant immunomodulatory properties. They effectively regulate immune responses by modulating both innate and adaptive immunity. These Exos can inhibit excessive inflammatory responses and promote tissue repair. Moreover, they participate in antigen presentation, which is essential for activating immune responses. The cargo of these Exos, including ligands, proteins, and microRNAs, can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response. By inhibiting lymphocyte proliferation, acting on macrophages, and increasing the population of regulatory T cells, these Exos contribute to maintaining immune and metabolic homeostasis. Furthermore, they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells, which holds potential for immunotherapy applications. Given the immense therapeutic potential of MSC-derived Exos, this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control, tumor suppression, and autoimmune disease management. This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos, offering theoretical references for their future clinical utilization as cell-free drug preparations.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"17 3","pages":"103560"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v17.i3.103560","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Exosomes (Exos) are extracellular vesicles secreted by cells and serve as crucial mediators of intercellular communication. They play a pivotal role in the pathogenesis and progression of various diseases and offer promising avenues for therapeutic interventions. Exos derived from mesenchymal stem cells (MSCs) have significant immunomodulatory properties. They effectively regulate immune responses by modulating both innate and adaptive immunity. These Exos can inhibit excessive inflammatory responses and promote tissue repair. Moreover, they participate in antigen presentation, which is essential for activating immune responses. The cargo of these Exos, including ligands, proteins, and microRNAs, can suppress T cell activity or enhance the population of immunosuppressive cells to dampen the immune response. By inhibiting lymphocyte proliferation, acting on macrophages, and increasing the population of regulatory T cells, these Exos contribute to maintaining immune and metabolic homeostasis. Furthermore, they can activate immune-related signaling pathways or serve as vehicles to deliver microRNAs and other bioactive substances to target tumor cells, which holds potential for immunotherapy applications. Given the immense therapeutic potential of MSC-derived Exos, this review comprehensively explores their mechanisms of immune regulation and therapeutic applications in areas such as infection control, tumor suppression, and autoimmune disease management. This article aims to provide valuable insights into the mechanisms behind the actions of MSC-derived Exos, offering theoretical references for their future clinical utilization as cell-free drug preparations.
期刊介绍:
The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.