{"title":"Fat mass and obesity-associated protein in mesenchymal stem cells inhibits osteoclastogenesis <i>via</i> lnc NORAD/miR-4284 axis in ankylosing spondylitis.","authors":"Wen-Jie Liu, Jia-Xin Wang, Quan-Feng Li, Yun-Hui Zhang, Peng-Fei Ji, Jia-Hao Jin, Yi-Bin Zhang, Zi-Hao Yuan, Pei Feng, Yan-Feng Wu, Hui-Yong Shen, Peng Wang","doi":"10.4252/wjsc.v17.i3.98911","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ankylosing spondylitis (AS) is recognized as a long-term inflammatory disorder that leads to inflammation in the spine and joints, alongside abnormal bone growth. In previous studies, we reported that mesenchymal stem cells (MSCs) derived from individuals with AS demonstrated a remarkable inhibition in the formation of osteoclasts compared to those obtained from healthy donors. The mechanism through which MSCs from AS patients achieve this inhibition remains unclear.</p><p><strong>Aim: </strong>To investigate the potential underlying mechanism by which MSCs from individuals with ankylosing spondylitis (AS-MSCs) inhibit osteoclastogenesis.</p><p><strong>Methods: </strong>We analysed fat mass and obesity-associated (FTO) protein levels in AS-MSCs and MSCs from healthy donors and investigated the effects and mechanism by which FTO in MSCs inhibits osteoclastogenesis by coculturing and measuring the levels of tartrate-resistant acid phosphatase, nuclear factor of activated T cells 1 and cathepsin K.</p><p><strong>Results: </strong>We found that FTO, an enzyme responsible for removing methyl groups from RNA, was more abundantly expressed in MSCs from AS patients than in those from healthy donors. Reducing FTO levels was shown to diminish the capacity of MSCs to inhibit osteoclast development. Further experimental results revealed that FTO affects the stability of the long non-coding RNA activated by DNA damage (NORAD) by altering its N6-methyladenosine methylation status. Deactivating NORAD in MSCs significantly increased osteoclast formation by affecting miR-4284, which could regulate the MSC-mediated inhibition of osteoclastogenesis reported in our previous research.</p><p><strong>Conclusion: </strong>This study revealed elevated FTO levels in AS-MSCs and found that FTO regulated the ability of AS-MSCs to inhibit osteoclast formation through the long noncoding RNA NORAD/miR-4284 axis.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"17 3","pages":"98911"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947893/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v17.i3.98911","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ankylosing spondylitis (AS) is recognized as a long-term inflammatory disorder that leads to inflammation in the spine and joints, alongside abnormal bone growth. In previous studies, we reported that mesenchymal stem cells (MSCs) derived from individuals with AS demonstrated a remarkable inhibition in the formation of osteoclasts compared to those obtained from healthy donors. The mechanism through which MSCs from AS patients achieve this inhibition remains unclear.
Aim: To investigate the potential underlying mechanism by which MSCs from individuals with ankylosing spondylitis (AS-MSCs) inhibit osteoclastogenesis.
Methods: We analysed fat mass and obesity-associated (FTO) protein levels in AS-MSCs and MSCs from healthy donors and investigated the effects and mechanism by which FTO in MSCs inhibits osteoclastogenesis by coculturing and measuring the levels of tartrate-resistant acid phosphatase, nuclear factor of activated T cells 1 and cathepsin K.
Results: We found that FTO, an enzyme responsible for removing methyl groups from RNA, was more abundantly expressed in MSCs from AS patients than in those from healthy donors. Reducing FTO levels was shown to diminish the capacity of MSCs to inhibit osteoclast development. Further experimental results revealed that FTO affects the stability of the long non-coding RNA activated by DNA damage (NORAD) by altering its N6-methyladenosine methylation status. Deactivating NORAD in MSCs significantly increased osteoclast formation by affecting miR-4284, which could regulate the MSC-mediated inhibition of osteoclastogenesis reported in our previous research.
Conclusion: This study revealed elevated FTO levels in AS-MSCs and found that FTO regulated the ability of AS-MSCs to inhibit osteoclast formation through the long noncoding RNA NORAD/miR-4284 axis.
期刊介绍:
The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.