ASFV pS183L protein negatively regulates RLR-mediated antiviral signalling by blocking MDA5 oligomerisation.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Huan Chen, Qun Yu, Xiaoyu Gao, Tao Huang, Chenyi Bao, Jiaona Guo, Zhenzhong Wang, Jiaxuan Lv, Jianjun Dai, Lorne A Babiuk, Xingqi Zou, Yong-Sam Jung, Yingjuan Qian
{"title":"ASFV pS183L protein negatively regulates RLR-mediated antiviral signalling by blocking MDA5 oligomerisation.","authors":"Huan Chen, Qun Yu, Xiaoyu Gao, Tao Huang, Chenyi Bao, Jiaona Guo, Zhenzhong Wang, Jiaxuan Lv, Jianjun Dai, Lorne A Babiuk, Xingqi Zou, Yong-Sam Jung, Yingjuan Qian","doi":"10.1186/s13567-025-01488-x","DOIUrl":null,"url":null,"abstract":"<p><p>The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are major sensors against viral infection, but their roles in DNA virus infection largely remain unknown. This study found that a previously uncharacterised protein, pS183L, negatively regulates RLR signalling by suppressing MDA5 oligomerisation. Specifically, we showed that the overexpression of pS183L suppresses MDA5 but not cGAS-STING or RIG-I-induced IFN-β activation. Consistently, pS183L inhibited high molecular weight poly (I:C) activated IFN-β production. Furthermore, we demonstrated that pS183L interacts with CARDs and the MDA5 Helicase domain, consequently blocking MDA5 oligomerisation and the MDA5-MAVS interaction. Taken together, we concluded that pS183L blocks MDA5 oligomerisation through protein-protein interaction and thus disrupts MDA5-mediated IFN-β signalling.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"70"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-025-01488-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are major sensors against viral infection, but their roles in DNA virus infection largely remain unknown. This study found that a previously uncharacterised protein, pS183L, negatively regulates RLR signalling by suppressing MDA5 oligomerisation. Specifically, we showed that the overexpression of pS183L suppresses MDA5 but not cGAS-STING or RIG-I-induced IFN-β activation. Consistently, pS183L inhibited high molecular weight poly (I:C) activated IFN-β production. Furthermore, we demonstrated that pS183L interacts with CARDs and the MDA5 Helicase domain, consequently blocking MDA5 oligomerisation and the MDA5-MAVS interaction. Taken together, we concluded that pS183L blocks MDA5 oligomerisation through protein-protein interaction and thus disrupts MDA5-mediated IFN-β signalling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信