Understanding (La,Sr)(Co,Fe)O3-δ Phase Instability within SOECs Using a Combined Experimental and Atomistic Modeling Approach.

IF 3.7 Q2 CHEMISTRY, PHYSICAL
ACS Physical Chemistry Au Pub Date : 2025-01-10 eCollection Date: 2025-03-26 DOI:10.1021/acsphyschemau.4c00095
Heather S Slomski, Jonas L Kaufman, Michael J Dzara, Nicholas A Strange, Cameron Priest, Jeremy L Hartvigsen, Nicholas Kane, Micah Casteel, Brandon C Wood, David S Ginley, Kyoung E Kweon, Brian P Gorman, Sarah Shulda
{"title":"Understanding (La,Sr)(Co,Fe)O<sub>3-δ</sub> Phase Instability within SOECs Using a Combined Experimental and Atomistic Modeling Approach.","authors":"Heather S Slomski, Jonas L Kaufman, Michael J Dzara, Nicholas A Strange, Cameron Priest, Jeremy L Hartvigsen, Nicholas Kane, Micah Casteel, Brandon C Wood, David S Ginley, Kyoung E Kweon, Brian P Gorman, Sarah Shulda","doi":"10.1021/acsphyschemau.4c00095","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the onset of degradation in the air electrode within solid oxide electrolysis cells (SOECs), and the subsequent impact on cell performance, is a critical step in mitigating the performance losses and stability issues of SOECs. In an effort to identify early onset degradation phenomena, SOECs were characterized as fabricated and after testing potentiostatically at 1.3 V for 1000 h at 750 °C. SOEC air electrodes composed of a 1:1 composite of La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (6428-LSCF) and Gd<sub>0.1</sub>Ce<sub>0.9</sub>O<sub>1.95</sub> (GDC) were studied using synchrotron X-ray diffraction (XRD), scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (STEM-EDS), and X-ray absorption near-edge spectroscopy (XANES) to evaluate the changes in the air electrode structurally and chemically. These techniques show the migration of Sr species from the air electrode through pores in the GDC barrier layer, progressing to the electrolyte boundary, where it accumulates and reacts with (Zr<sub>0.84</sub>Y<sub>0.16</sub>)O<sub>2-δ</sub> (YSZ) to form SrZrO<sub>3</sub>. Microscopy results are paired with atomistic simulations to better understand the relationship between the thermodynamic instability of 6428-LSCF and cell fabrication/testing conditions. First-principles calculations reveal that LSCF-6428 is not stable during cell manufacturing and testing conditions, which supports the experimental identification of secondary phases in both as-fabricated and tested cells. Together, these results demonstrate that the challenging environments encountered by SOECs during cell manufacturing and operation lead to instabilities of the target 6428-LSCF anode material and underscore the need for more durable, high-performing SOEC components.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 2","pages":"207-218"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.4c00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the onset of degradation in the air electrode within solid oxide electrolysis cells (SOECs), and the subsequent impact on cell performance, is a critical step in mitigating the performance losses and stability issues of SOECs. In an effort to identify early onset degradation phenomena, SOECs were characterized as fabricated and after testing potentiostatically at 1.3 V for 1000 h at 750 °C. SOEC air electrodes composed of a 1:1 composite of La0.6Sr0.4Co0.2Fe0.8O3-δ (6428-LSCF) and Gd0.1Ce0.9O1.95 (GDC) were studied using synchrotron X-ray diffraction (XRD), scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (STEM-EDS), and X-ray absorption near-edge spectroscopy (XANES) to evaluate the changes in the air electrode structurally and chemically. These techniques show the migration of Sr species from the air electrode through pores in the GDC barrier layer, progressing to the electrolyte boundary, where it accumulates and reacts with (Zr0.84Y0.16)O2-δ (YSZ) to form SrZrO3. Microscopy results are paired with atomistic simulations to better understand the relationship between the thermodynamic instability of 6428-LSCF and cell fabrication/testing conditions. First-principles calculations reveal that LSCF-6428 is not stable during cell manufacturing and testing conditions, which supports the experimental identification of secondary phases in both as-fabricated and tested cells. Together, these results demonstrate that the challenging environments encountered by SOECs during cell manufacturing and operation lead to instabilities of the target 6428-LSCF anode material and underscore the need for more durable, high-performing SOEC components.

用实验和原子模拟相结合的方法理解soec内(La,Sr)(Co,Fe)O3-δ相不稳定性。
了解固体氧化物电解电池(soec)中空气电极降解的开始,以及随后对电池性能的影响,是减轻soec性能损失和稳定性问题的关键一步。为了识别早发性降解现象,将soec制成,并在750°C下在1.3 V下进行1000小时的恒电位测试。采用同步x射线衍射(XRD)、扫描透射电镜-能量色散x射线能谱(tem - eds)和x射线吸收近边光谱(XANES)研究了由La0.6Sr0.4Co0.2Fe0.8O3-δ (6428-LSCF)和Gd0.1Ce0.9O1.95 (GDC)组成的1:1复合材料SOEC空气电极的结构和化学变化。这些技术表明,Sr物质从空气电极通过GDC阻挡层的孔隙迁移到电解质边界,在那里它积累并与(Zr0.84Y0.16)O2-δ (YSZ)反应形成SrZrO3。显微镜结果与原子模拟相匹配,以更好地理解6428-LSCF的热力学不稳定性与电池制造/测试条件之间的关系。第一性原理计算表明,LSCF-6428在电池制造和测试条件下都不稳定,这支持了在制造和测试电池中对二次相的实验鉴定。总之,这些结果表明,SOEC在电池制造和运行过程中遇到的具有挑战性的环境导致目标6428-LSCF阳极材料的不稳定性,并强调需要更耐用,高性能的SOEC组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信