Mohamed A Morsy, Thomas F Garrison, Michael R Kessler, Mohammad H A Mhareb, Hosny Zahr El-Deen
{"title":"Structural Elucidation of Lithium Borate Glasses Using XRD, FTIR, and EPR Spectroscopy.","authors":"Mohamed A Morsy, Thomas F Garrison, Michael R Kessler, Mohammad H A Mhareb, Hosny Zahr El-Deen","doi":"10.1021/acsphyschemau.4c00106","DOIUrl":null,"url":null,"abstract":"<p><p>A detailed investigation of the structural changes of lithium borate (LiB) glass 25Li<sub>2</sub>O-(75 - <i>x</i>)B<sub>2</sub>O<sub>3</sub> was conducted in the absence and presence of lead(II) oxide or aluminum oxide (<i>x</i> = 10 mol %) glass modifiers. X-ray diffraction (XRD), Fourier transform infrared (FTIR), and electron paramagnetic resonance (EPR) spectroscopy were used to explore the structural properties of LiB glass by incorporating trace amounts of manganese(III) oxide (0.00-0.25 mol %) as a probe. Differential thermal analysis and XRD results for the glasses and their ceramics confirmed the integration of aluminum atoms into the glass framework by forming a lithium aluminum boron oxide Li<sub>2</sub>(AlB<sub>5</sub>O<sub>10</sub>) crystalline phase. Lead atoms were located interstitially, which disordered the borate glass structure and produced a lithium tetraborate crystalline phase. Semiempirical modeling of the glass structures was conducted to estimate the fundamental vibrational modes of the glass materials using a parametric method 3 (PM3MM) with molecular mechanics corrections to elucidate the geometry of the borate (BO<sub>3</sub>) groups and their possible vibrational modes. Our analysis revised the conventional representation of the tetrahedral BO<sub>4</sub> units, which were not observed, to \"distorted-trigonal\" BO<sub>3</sub> groups and associated with nonbridging oxygen (NBO) atoms. EPR spectroscopy established a link between the NBO in oxides and the well-defined peak at <i>g</i>-factor ∼4.2 in glass materials, which had been assigned to iron(III) ions according to the literature.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 2","pages":"227-238"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.4c00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A detailed investigation of the structural changes of lithium borate (LiB) glass 25Li2O-(75 - x)B2O3 was conducted in the absence and presence of lead(II) oxide or aluminum oxide (x = 10 mol %) glass modifiers. X-ray diffraction (XRD), Fourier transform infrared (FTIR), and electron paramagnetic resonance (EPR) spectroscopy were used to explore the structural properties of LiB glass by incorporating trace amounts of manganese(III) oxide (0.00-0.25 mol %) as a probe. Differential thermal analysis and XRD results for the glasses and their ceramics confirmed the integration of aluminum atoms into the glass framework by forming a lithium aluminum boron oxide Li2(AlB5O10) crystalline phase. Lead atoms were located interstitially, which disordered the borate glass structure and produced a lithium tetraborate crystalline phase. Semiempirical modeling of the glass structures was conducted to estimate the fundamental vibrational modes of the glass materials using a parametric method 3 (PM3MM) with molecular mechanics corrections to elucidate the geometry of the borate (BO3) groups and their possible vibrational modes. Our analysis revised the conventional representation of the tetrahedral BO4 units, which were not observed, to "distorted-trigonal" BO3 groups and associated with nonbridging oxygen (NBO) atoms. EPR spectroscopy established a link between the NBO in oxides and the well-defined peak at g-factor ∼4.2 in glass materials, which had been assigned to iron(III) ions according to the literature.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis