Victor Somtochukwu Mbanugo, Boluwatife Stephen Ojo, Ta Chun Lin, Yue-Wern Huang, Marek Locmelis, Daoru Han
{"title":"Per- and Polyfluoroalkyl Substance (PFAS) Degradation in Water and Soil Using Cold Atmospheric Plasma (CAP): A Review.","authors":"Victor Somtochukwu Mbanugo, Boluwatife Stephen Ojo, Ta Chun Lin, Yue-Wern Huang, Marek Locmelis, Daoru Han","doi":"10.1021/acsphyschemau.4c00092","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFASs) are persistent organic chemicals found in numerous industrial applications and everyday products. The excessive amounts of PFASs in water and soil, together with their link to severe health issues, have prompted substantial public concerns, making their removal from the environment a necessity. Existing degradation techniques are frequently lacking due to their low efficiency, cost-effectiveness, and potential for secondary contamination. Cold Atmospheric Plasma (CAP) technology has emerged as a promising alternative, utilizing energized reactive species to break down PFASs under ambient conditions. Therefore, this review examines the efficacy and effectiveness of CAP in degrading PFASs by reviewing various CAP setups and examining the key factors involved. This review also aims to further the development of CAP as a viable solution for PFAS degradation by addressing outstanding challenges and future directions in soil and water treatment.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 2","pages":"117-133"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950857/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.4c00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent organic chemicals found in numerous industrial applications and everyday products. The excessive amounts of PFASs in water and soil, together with their link to severe health issues, have prompted substantial public concerns, making their removal from the environment a necessity. Existing degradation techniques are frequently lacking due to their low efficiency, cost-effectiveness, and potential for secondary contamination. Cold Atmospheric Plasma (CAP) technology has emerged as a promising alternative, utilizing energized reactive species to break down PFASs under ambient conditions. Therefore, this review examines the efficacy and effectiveness of CAP in degrading PFASs by reviewing various CAP setups and examining the key factors involved. This review also aims to further the development of CAP as a viable solution for PFAS degradation by addressing outstanding challenges and future directions in soil and water treatment.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis