Improved Skill of Rotaxanes to Recognize Cations: A Theoretical Perspective.

IF 3.7 Q2 CHEMISTRY, PHYSICAL
ACS Physical Chemistry Au Pub Date : 2025-01-06 eCollection Date: 2025-03-26 DOI:10.1021/acsphyschemau.4c00090
Renato Pereira Orenha, Alvaro Muñoz-Castro, Maurício Jeomar Piotrowski, Giovanni F Caramori, Renato Gonçalves Rocha, Renato Luis Tame Parreira
{"title":"Improved Skill of Rotaxanes to Recognize Cations: A Theoretical Perspective.","authors":"Renato Pereira Orenha, Alvaro Muñoz-Castro, Maurício Jeomar Piotrowski, Giovanni F Caramori, Renato Gonçalves Rocha, Renato Luis Tame Parreira","doi":"10.1021/acsphyschemau.4c00090","DOIUrl":null,"url":null,"abstract":"<p><p>Cations have significant applications in fields such as medicinal inorganic chemistry and catalysis. Rotaxanes are composed of a macrocyclic structure that is mechanically interlocked with a linear molecule. These mechanically interlocked molecules (MIMs) provide a potential chemical environment that allows for the interaction with cations. In this study, the bonding situations between rotaxanes or their acyclic/cyclic molecular derivatives and: (i) transition metal (Zn<sup>2+</sup> and Cd<sup>2+</sup>); or (ii) alkali metal (Li<sup>+</sup>, Na<sup>+</sup>, and K<sup>+</sup>), cations have been studied. It is notable that among the MIMs structures, the rotaxanes demonstrate enhanced interactions with cations in comparison to the cyclic and, notably, the acyclic derivative molecules. The modification of rotaxane structures through structural changes and chemical reduction represents an intriguing approach to enhance cationic recognition, which is supported by the formation of more favorable electrostatic and/or orbital interaction energies in comparison with Pauli repulsive energies. The findings of this investigation can be employed in the synthesis of compounds with enhanced cation recognition capabilities.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 2","pages":"183-194"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950869/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsphyschemau.4c00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cations have significant applications in fields such as medicinal inorganic chemistry and catalysis. Rotaxanes are composed of a macrocyclic structure that is mechanically interlocked with a linear molecule. These mechanically interlocked molecules (MIMs) provide a potential chemical environment that allows for the interaction with cations. In this study, the bonding situations between rotaxanes or their acyclic/cyclic molecular derivatives and: (i) transition metal (Zn2+ and Cd2+); or (ii) alkali metal (Li+, Na+, and K+), cations have been studied. It is notable that among the MIMs structures, the rotaxanes demonstrate enhanced interactions with cations in comparison to the cyclic and, notably, the acyclic derivative molecules. The modification of rotaxane structures through structural changes and chemical reduction represents an intriguing approach to enhance cationic recognition, which is supported by the formation of more favorable electrostatic and/or orbital interaction energies in comparison with Pauli repulsive energies. The findings of this investigation can be employed in the synthesis of compounds with enhanced cation recognition capabilities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信