Youthful Brain-Derived Extracellular Vesicle-Loaded GelMA Hydrogel Promotes Scarless Wound Healing in Aged Skin by Modulating Senescence and Mitochondrial Function.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-03-28 eCollection Date: 2025-01-01 DOI:10.34133/research.0644
Yuzhu Wu, Jiajie Mao, Yanyan Zhou, Gaoying Hong, Haiyan Wu, Zihe Hu, Xiaoyuan Huang, Jue Shi, Zhijian Xie, Yanhua Lan
{"title":"Youthful Brain-Derived Extracellular Vesicle-Loaded GelMA Hydrogel Promotes Scarless Wound Healing in Aged Skin by Modulating Senescence and Mitochondrial Function.","authors":"Yuzhu Wu, Jiajie Mao, Yanyan Zhou, Gaoying Hong, Haiyan Wu, Zihe Hu, Xiaoyuan Huang, Jue Shi, Zhijian Xie, Yanhua Lan","doi":"10.34133/research.0644","DOIUrl":null,"url":null,"abstract":"<p><p>Slow wound healing in the elderly has attracted much attention recently due to the associated infection risks and decreased longevity. The \"brain-skin axis\" theory suggests that abnormalities in the brain and nervous system can lead to skin degeneration because abnormal mental states, like chronic stress, can have negative physiological and functional effects on the skin through a variety of processes, resulting in delayed wound healing and accelerated skin aging. However, it remains unclear whether maintaining a youthful brain has beneficial effects on aged skin healing. In light of this, we identified youthful brain-derived extracellular vesicles (YBEVs) and created a composite GelMA hydrogel material that encourages scarless wound healing in aged skin. We found that YBEVs reduce the expression of senescence, senescence-associated secretory phenotypes, and inflammation-associated proteins, and even restore dysfunction in senescent cells. Furthermore, by encouraging collagen deposition, angiogenesis, epidermal and dermal regeneration, and folliculogenesis, we demonstrated that YBEV-containing composite hydrogels accelerated scarless wound healing in skin wounds of aged rats. The pro-repairing speed and effect of this composite hydrogel even matched that of young rats. Subsequent proteomic analysis revealed the presence of numerous proteins within YBEVs, some of which may play a role in the regulation of skin energy intake, particularly through oxidative phosphorylation and mitochondrial function. In conclusion, the findings suggest that maintaining a youthful brain could potentially alleviate skin aging, and the proposed YBEVs-GelMA hydrogel emerges as a promising strategy for addressing age-related impairments in skin healing.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0644"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0644","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Slow wound healing in the elderly has attracted much attention recently due to the associated infection risks and decreased longevity. The "brain-skin axis" theory suggests that abnormalities in the brain and nervous system can lead to skin degeneration because abnormal mental states, like chronic stress, can have negative physiological and functional effects on the skin through a variety of processes, resulting in delayed wound healing and accelerated skin aging. However, it remains unclear whether maintaining a youthful brain has beneficial effects on aged skin healing. In light of this, we identified youthful brain-derived extracellular vesicles (YBEVs) and created a composite GelMA hydrogel material that encourages scarless wound healing in aged skin. We found that YBEVs reduce the expression of senescence, senescence-associated secretory phenotypes, and inflammation-associated proteins, and even restore dysfunction in senescent cells. Furthermore, by encouraging collagen deposition, angiogenesis, epidermal and dermal regeneration, and folliculogenesis, we demonstrated that YBEV-containing composite hydrogels accelerated scarless wound healing in skin wounds of aged rats. The pro-repairing speed and effect of this composite hydrogel even matched that of young rats. Subsequent proteomic analysis revealed the presence of numerous proteins within YBEVs, some of which may play a role in the regulation of skin energy intake, particularly through oxidative phosphorylation and mitochondrial function. In conclusion, the findings suggest that maintaining a youthful brain could potentially alleviate skin aging, and the proposed YBEVs-GelMA hydrogel emerges as a promising strategy for addressing age-related impairments in skin healing.

年轻的脑源性细胞外囊泡装载GelMA水凝胶通过调节衰老和线粒体功能促进衰老皮肤无疤痕伤口愈合。
由于相关的感染风险和寿命降低,老年人伤口愈合缓慢引起了人们的广泛关注。“脑-皮肤轴”理论认为,大脑和神经系统的异常可导致皮肤变性,因为异常的精神状态,如慢性应激,可通过多种过程对皮肤产生负面的生理和功能影响,导致伤口愈合延迟,皮肤老化加速。然而,目前还不清楚保持年轻的大脑是否对衰老的皮肤愈合有有益的影响。鉴于此,我们确定了年轻的脑源性细胞外囊泡(YBEVs),并创造了一种复合GelMA水凝胶材料,可以促进衰老皮肤的无疤痕伤口愈合。我们发现,ybev可以减少衰老、衰老相关分泌表型和炎症相关蛋白的表达,甚至可以恢复衰老细胞的功能障碍。此外,通过促进胶原沉积、血管生成、表皮和真皮再生以及毛囊生成,我们证明了含有ybev的复合水凝胶加速了老年大鼠皮肤伤口的无疤痕愈合。复合水凝胶的促修复速度和效果与幼龄大鼠相当。随后的蛋白质组学分析显示,ybev中存在许多蛋白质,其中一些可能在皮肤能量摄入的调节中发挥作用,特别是通过氧化磷酸化和线粒体功能。总之,研究结果表明,保持年轻的大脑可能会潜在地缓解皮肤衰老,而提出的YBEVs-GelMA水凝胶是解决皮肤愈合中与年龄相关的损伤的有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信