Carlos Javier Solis-Oviedo, Francisco Javier Pérez Jiménez, Jonathan Acuña Campos, César Iván Nájera Ríos, Miguel Ángel Bañuelos Saucedo, Fernando Pérez-Escamirosa
{"title":"A 3D-printed hybrid portable simulator for skills training in arthroscopic knee surgery.","authors":"Carlos Javier Solis-Oviedo, Francisco Javier Pérez Jiménez, Jonathan Acuña Campos, César Iván Nájera Ríos, Miguel Ángel Bañuelos Saucedo, Fernando Pérez-Escamirosa","doi":"10.1177/09544119251328414","DOIUrl":null,"url":null,"abstract":"<p><p>Arthroscopic surgery has become the first option for the treatment of joint injuries. However, training outside the operating room is limited by the lack of portability and high cost of high-fidelity simulators. The aim of this study is to present the ArthSim hybrid simulator, a low-cost portable device for the training of psychomotor skills of orthopaedic surgeons in arthroscopic knee surgery. The ArthSim simulator consists of a physical model of the knee with an integrated motion tracking system with a virtual reality application that captures and replicates the movements of the knee joint and the two arthroscopic instruments inside the virtual model, in a mixed reality approach to arthroscopy training. The functionality of ArthSim's technology was evaluated in two experiments: static and dynamic. The interaction of the physical knee joint and the arthroscopic instruments within the virtual model was evaluated by eight orthopaedic surgeons, who recreated the common positions of the knee, arthroscope, and instruments during the exploration of the internal structures. The results indicated a surgical total workspace of 80 mm<sup>3</sup> with a range of motion of 115° for flexion, 23° for abduction, and 33° for rotation in the knee joint. The measurements showed linearity and repeatability with errors below, for motion capture. Feedback provided by orthopaedic surgeons on ArthSim was used to identify the device's points of improvement. The ArthSim simulator provides an effective alternative for arthroscopic training in a hybrid simulation approach, offering natural haptics to enhance the surgical experience of orthopaedic surgeons.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251328414"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251328414","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Arthroscopic surgery has become the first option for the treatment of joint injuries. However, training outside the operating room is limited by the lack of portability and high cost of high-fidelity simulators. The aim of this study is to present the ArthSim hybrid simulator, a low-cost portable device for the training of psychomotor skills of orthopaedic surgeons in arthroscopic knee surgery. The ArthSim simulator consists of a physical model of the knee with an integrated motion tracking system with a virtual reality application that captures and replicates the movements of the knee joint and the two arthroscopic instruments inside the virtual model, in a mixed reality approach to arthroscopy training. The functionality of ArthSim's technology was evaluated in two experiments: static and dynamic. The interaction of the physical knee joint and the arthroscopic instruments within the virtual model was evaluated by eight orthopaedic surgeons, who recreated the common positions of the knee, arthroscope, and instruments during the exploration of the internal structures. The results indicated a surgical total workspace of 80 mm3 with a range of motion of 115° for flexion, 23° for abduction, and 33° for rotation in the knee joint. The measurements showed linearity and repeatability with errors below, for motion capture. Feedback provided by orthopaedic surgeons on ArthSim was used to identify the device's points of improvement. The ArthSim simulator provides an effective alternative for arthroscopic training in a hybrid simulation approach, offering natural haptics to enhance the surgical experience of orthopaedic surgeons.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.