Whole genome analysis and biocontrol potential of endophytic Bacillus cereus EMS1 against Fusarium wilt in banana.

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shilpi Singh, Piyush Kant Rai, Azmat Ali Khan, Sabiha Fatima, Kamlesh Choure, Jeong Chan Joo, Ashutosh Pandey
{"title":"Whole genome analysis and biocontrol potential of endophytic Bacillus cereus EMS1 against Fusarium wilt in banana.","authors":"Shilpi Singh, Piyush Kant Rai, Azmat Ali Khan, Sabiha Fatima, Kamlesh Choure, Jeong Chan Joo, Ashutosh Pandey","doi":"10.1007/s11274-025-04326-6","DOIUrl":null,"url":null,"abstract":"<p><p>Endophytic bacteria are essential for promoting plant growth and increasing plant resilience to various environmental stresses. Although it is well-documented that several endophytic Bacillus species exhibit plant growth-promoting properties, this is the first report on the genome study of Bacillus cereus EMS1, isolated from Musa acuminata G9 in India. This study analyzed the genomics, plant growth traits, and fusarium wilt mitigation potential of Bacillus cereus EMS1. This analysis identified specific genomic features, including potential mechanisms contributing to plant growth promotion, which were also submitted to NCBI (Bioproject ID: PRJNA784269). The in vivo study showed that EMS1 mitigated the impact of Fusarium oxysporum f. sp. cubense on banana plants. Although it did not affect the number of leaves, other parameters influenced by pathogen infection and EMS1 treatment showed notable differences, including fresh weight (Fusarium oxysporum only: 15 g; EMS1 + Fusarium oxysporum: 21 g), dry weight (Fusarium oxysporum only: 1 g; EMS1 + Fusarium oxysporum: 4.7 g), and root length (Fusarium oxysporum only: 6.5 cm; EMS1 + Fusarium oxysporum: 9 cm). Additionally, genomic analysis revealed that the EMS1 genome contains distinctive genes linked to plant growth and antimicrobial activity. Overall, the findings highlight the potential of endophytic Bacillus cereus EMS1 in promoting plant growth and enhancing banana plant resistance against Fusarium oxysporum.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 4","pages":"119"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04326-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endophytic bacteria are essential for promoting plant growth and increasing plant resilience to various environmental stresses. Although it is well-documented that several endophytic Bacillus species exhibit plant growth-promoting properties, this is the first report on the genome study of Bacillus cereus EMS1, isolated from Musa acuminata G9 in India. This study analyzed the genomics, plant growth traits, and fusarium wilt mitigation potential of Bacillus cereus EMS1. This analysis identified specific genomic features, including potential mechanisms contributing to plant growth promotion, which were also submitted to NCBI (Bioproject ID: PRJNA784269). The in vivo study showed that EMS1 mitigated the impact of Fusarium oxysporum f. sp. cubense on banana plants. Although it did not affect the number of leaves, other parameters influenced by pathogen infection and EMS1 treatment showed notable differences, including fresh weight (Fusarium oxysporum only: 15 g; EMS1 + Fusarium oxysporum: 21 g), dry weight (Fusarium oxysporum only: 1 g; EMS1 + Fusarium oxysporum: 4.7 g), and root length (Fusarium oxysporum only: 6.5 cm; EMS1 + Fusarium oxysporum: 9 cm). Additionally, genomic analysis revealed that the EMS1 genome contains distinctive genes linked to plant growth and antimicrobial activity. Overall, the findings highlight the potential of endophytic Bacillus cereus EMS1 in promoting plant growth and enhancing banana plant resistance against Fusarium oxysporum.

香蕉蜡样芽孢杆菌EMS1对枯萎病的全基因组分析及生物防治潜力。
内生细菌对促进植物生长和增强植物对各种环境胁迫的适应能力至关重要。虽然已有文献证明几种内生芽孢杆菌具有促进植物生长的特性,但这是首次报道从印度的Musa acuminata G9中分离的蜡样芽孢杆菌EMS1的基因组研究。本研究分析了蜡样芽孢杆菌EMS1的基因组学、植物生长性状和缓解枯萎病的潜力。该分析确定了特定的基因组特征,包括促进植物生长的潜在机制,这些特征也提交给NCBI (Bioproject ID: PRJNA784269)。体内研究表明,EMS1可减轻香蕉枯萎病对香蕉植株的影响。虽然对叶片数量没有影响,但受病原菌侵染和EMS1处理影响的其他参数有显著差异,包括鲜重(仅尖孢镰刀菌:15 g;EMS1 +尖孢镰刀菌:21克),干重(仅尖孢镰刀菌:1克;EMS1 +尖孢镰刀菌:4.7 g)和根长(仅尖孢镰刀菌:6.5 cm;EMS1 +尖孢镰刀菌:9厘米)。此外,基因组分析显示,EMS1基因组包含与植物生长和抗菌活性相关的独特基因。总之,这些发现突出了蜡样芽孢杆菌内生菌EMS1在促进植物生长和增强香蕉植物对尖孢镰刀菌抗性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信