{"title":"Integrative deep learning and radiomics analysis for ovarian tumor classification and diagnosis: a multicenter large-sample comparative study.","authors":"Yi Zhou, Yayang Duan, Qiwei Zhu, Siyao Li, Xiaoling Liu, Ting Cheng, Dongliang Cheng, Yuanyin Shi, Jingshu Zhang, Jinyan Yang, Yanyan Zheng, Chuanfen Gao, Junli Wang, Yunxia Cao, Chaoxue Zhang","doi":"10.1007/s11547-025-02006-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to evaluate the effectiveness of combining transvaginal ultrasound (US)-based radiomics and deep learning model for the accurate differentiation between benign and malignant ovarian tumors in large-scale studies.</p><p><strong>Materials and methods: </strong>A multicenter retrospective study collected grayscale and color US images of ovarian tumors. Patients were divided into training, internal, and external validation groups. Models including a convolutional neural networks (CNN), optimal radiomics, and a combined model were constructed and evaluated for predictive performance using area under curve (AUC), sensitivity, and specificity. The DeLong test compared model AUCs with O-RADS and expert assessments.</p><p><strong>Results: </strong>3193 images from 2078 patients were analyzed. The CNN achieved AUCs of 0.970 (internal) and 0.959 (external), respectively. Optimal radiomic model achieved AUCs of 0.949 (internal) and 0.954 (external), respectively. The combined CNN-radiomics model attained the highest AUC of 0.977 (internal) and 0.972 (external), respectively, outperforming individual models, O-RADS, and expert methods (p < 0.05).</p><p><strong>Conclusions: </strong>The combined CNN-radiomics model using transvaginal US images provides more accurate and reliable ovarian tumor diagnosis, enhancing malignancy prediction and offering clinicians a more precise diagnostic tool.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-02006-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aims to evaluate the effectiveness of combining transvaginal ultrasound (US)-based radiomics and deep learning model for the accurate differentiation between benign and malignant ovarian tumors in large-scale studies.
Materials and methods: A multicenter retrospective study collected grayscale and color US images of ovarian tumors. Patients were divided into training, internal, and external validation groups. Models including a convolutional neural networks (CNN), optimal radiomics, and a combined model were constructed and evaluated for predictive performance using area under curve (AUC), sensitivity, and specificity. The DeLong test compared model AUCs with O-RADS and expert assessments.
Results: 3193 images from 2078 patients were analyzed. The CNN achieved AUCs of 0.970 (internal) and 0.959 (external), respectively. Optimal radiomic model achieved AUCs of 0.949 (internal) and 0.954 (external), respectively. The combined CNN-radiomics model attained the highest AUC of 0.977 (internal) and 0.972 (external), respectively, outperforming individual models, O-RADS, and expert methods (p < 0.05).
Conclusions: The combined CNN-radiomics model using transvaginal US images provides more accurate and reliable ovarian tumor diagnosis, enhancing malignancy prediction and offering clinicians a more precise diagnostic tool.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.