Tukaram Karanwad, Dimple S Lalchandani, Sachin B Jorvekar, Santa Mandal, Pawan Kumar Porwal, Roshan M Borkar, Subham Banerjee
{"title":"Pharmacokinetic assessment and level-A IVIVC establishment of rifampicin-loaded 3D printed tablets using SLS 3D printing.","authors":"Tukaram Karanwad, Dimple S Lalchandani, Sachin B Jorvekar, Santa Mandal, Pawan Kumar Porwal, Roshan M Borkar, Subham Banerjee","doi":"10.1080/20415990.2025.2484169","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study investigated the <i>in vitro</i> dissolution and <i>in vivo</i> absorption of rifampicin (RIF)-containing 3D-printed tablets using Selective Laser Sintering (SLS) technology.</p><p><strong>Methods: </strong><i>In vitro</i> dissolution was assessed in acidic (pH 1.2) and alkaline (pH 6.8) buffer media, while <i>in vivo</i> absorption was evaluated in a New Zealand White rabbit model. Both analytical and bioanalytical methods were rigorously developed and validated using LC-ESI-MS/MS, following ICH Q2 (R1) and FDA guidelines, respectively.</p><p><strong>Results: </strong>In the acidic medium, 16.22% of RIF was released within the first 2 h, whereas in the alkaline medium, the release increased to 41.75%, indicating a sustained release from the sintered 3D printed tablets. Pharmacokinetic parameters and their corresponding values of <i>C</i><sub><i>max</i></sub> (445.38 ± 193.62 ng/mL), <i>T</i><sub><i>max</i></sub> (02 ± 0.00 hr), <i>AUC</i><sub><i>0-t</i></sub> (841.51 ± 334.13 ng.h/mL), <i>AUC</i><sub><i>0-∞</i></sub> (861.66 ± 340.54 ng.h/mL), <i>K</i><sub><i>el</i></sub> (0.61 ± 0.13 h<sup>-1</sup>), and <i>t</i><sub><i>1/2</i></sub> (1.18 ± 0.25 hr) were obtained, demonstrating effective RIF absorption in the rabbit. Additionally, an <i>in vitro-in vivo</i> correlation (IVIVC) model was developed, demonstrating a good correlation between <i>in vitro</i> release and <i>in vivo</i> absorption, with R<sup>2</sup> value of 0.9696.</p><p><strong>Conclusion: </strong>The results underscore the potential of SLS 3DP technology in advancing the development of RIF-containing 3D printed tablets by sustaining <i>in vitro</i> dissolution following <i>in vivo</i> absorption profiles.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-10"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2025.2484169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study investigated the in vitro dissolution and in vivo absorption of rifampicin (RIF)-containing 3D-printed tablets using Selective Laser Sintering (SLS) technology.
Methods: In vitro dissolution was assessed in acidic (pH 1.2) and alkaline (pH 6.8) buffer media, while in vivo absorption was evaluated in a New Zealand White rabbit model. Both analytical and bioanalytical methods were rigorously developed and validated using LC-ESI-MS/MS, following ICH Q2 (R1) and FDA guidelines, respectively.
Results: In the acidic medium, 16.22% of RIF was released within the first 2 h, whereas in the alkaline medium, the release increased to 41.75%, indicating a sustained release from the sintered 3D printed tablets. Pharmacokinetic parameters and their corresponding values of Cmax (445.38 ± 193.62 ng/mL), Tmax (02 ± 0.00 hr), AUC0-t (841.51 ± 334.13 ng.h/mL), AUC0-∞ (861.66 ± 340.54 ng.h/mL), Kel (0.61 ± 0.13 h-1), and t1/2 (1.18 ± 0.25 hr) were obtained, demonstrating effective RIF absorption in the rabbit. Additionally, an in vitro-in vivo correlation (IVIVC) model was developed, demonstrating a good correlation between in vitro release and in vivo absorption, with R2 value of 0.9696.
Conclusion: The results underscore the potential of SLS 3DP technology in advancing the development of RIF-containing 3D printed tablets by sustaining in vitro dissolution following in vivo absorption profiles.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.