Shirlley Elizabeth Martínez Tolibia, Adrián Díaz Pacheco, Miguel Ángel Villalobos López, Rita Karen Pacheco Cabañas, Rosina Cabrera, Jorge Rocha, Víctor Eric López Y López
{"title":"The role of AbrB from plate to bioreactor: implications of induced expression on physiological and metabolic responses in Bacillus thuringiensis.","authors":"Shirlley Elizabeth Martínez Tolibia, Adrián Díaz Pacheco, Miguel Ángel Villalobos López, Rita Karen Pacheco Cabañas, Rosina Cabrera, Jorge Rocha, Víctor Eric López Y López","doi":"10.1007/s11274-025-04334-6","DOIUrl":null,"url":null,"abstract":"<p><p>Transition state regulators from Bacillus can control diverse physiological responses such as growth, metabolism, motility, virulence, and sporulation. The AbrB protein is a transcriptional regulator involved in multiple functions during exponential phase and intricated regulatory pathways that control adaptive states differentially. Despite its importance, the AbrB role has not been well characterized during the growth cycle, and its implication in metabolic functions remains elusive, especially in the Bacillus cereus group. In this work, we characterized the role of AbrB on phenotypes such as spreading motility, growth profiles, sporulation, and on activity of core metabolic pathways of Bacillus thuringiensis. For this, a strain with inducible abrB expression was generated in the wild type Bt HD73 background. In vitro evaluations of phenotypic traits demonstrated differences in sporulation and motility, where induction of abrB presumably affected these functions under nutrient-limited media. In addition, AbrB induction during bioreactor fermentations led to higher biomass production and changes dissolved oxygen (DO) profile, which was also accompanied with a delay in sporulation. Based on these results, metabolic pathways such as glycolysis and the Krebs cycle were explored to address the effect of AbrB overproduction on transcription of genes coding for pyruvate dehydrogenase (pdHA), lactate dehydrogenase (ldH), citrate synthase (citZ) and aconitase (citB). Our findings suggest variations in the carbon-flux in the central carbon metabolism due to abrB overexpression. This work contributes to the elucidation of AbrB involvement in regulatory networks of B. thuringiensis, to develop engineering-based strategies to use these bacteria in other biotechnological applications besides as biological control agent.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 4","pages":"120"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04334-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transition state regulators from Bacillus can control diverse physiological responses such as growth, metabolism, motility, virulence, and sporulation. The AbrB protein is a transcriptional regulator involved in multiple functions during exponential phase and intricated regulatory pathways that control adaptive states differentially. Despite its importance, the AbrB role has not been well characterized during the growth cycle, and its implication in metabolic functions remains elusive, especially in the Bacillus cereus group. In this work, we characterized the role of AbrB on phenotypes such as spreading motility, growth profiles, sporulation, and on activity of core metabolic pathways of Bacillus thuringiensis. For this, a strain with inducible abrB expression was generated in the wild type Bt HD73 background. In vitro evaluations of phenotypic traits demonstrated differences in sporulation and motility, where induction of abrB presumably affected these functions under nutrient-limited media. In addition, AbrB induction during bioreactor fermentations led to higher biomass production and changes dissolved oxygen (DO) profile, which was also accompanied with a delay in sporulation. Based on these results, metabolic pathways such as glycolysis and the Krebs cycle were explored to address the effect of AbrB overproduction on transcription of genes coding for pyruvate dehydrogenase (pdHA), lactate dehydrogenase (ldH), citrate synthase (citZ) and aconitase (citB). Our findings suggest variations in the carbon-flux in the central carbon metabolism due to abrB overexpression. This work contributes to the elucidation of AbrB involvement in regulatory networks of B. thuringiensis, to develop engineering-based strategies to use these bacteria in other biotechnological applications besides as biological control agent.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.