Ulugbek Ergashev, Tianzhao Yang, Yuwen Zhang, Ibragim Ergashev, Long Luo, Mei Yu, Yi Han
{"title":"Protein S-nitrosylation: roles for nitric oxide signaling in the regulation of stress-dependent phytohormones.","authors":"Ulugbek Ergashev, Tianzhao Yang, Yuwen Zhang, Ibragim Ergashev, Long Luo, Mei Yu, Yi Han","doi":"10.1111/ppl.70180","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide (NO) is integral to modulating a wide array of physiological processes in plants, chiefly through its interactions with phytohormones. This review explores the complex dynamics between NO with four principal phytohormones: abscisic acid (ABA), salicylic acid (SA), auxin, and jasmonic acid (JA). The primary focus is on NO-mediated reversible redox-based modifications with a specific emphasis on S-nitrosylation. The impact of NO-induced S-nitrosylation is profound as it regulates crucial proteins involved in hormone signaling pathways, thereby influencing their synthesis, stability, and functional activity. The review elucidates how NO-mediated S-nitrosylation orchestrates the activities of ABA, SA, auxin, and JA under varying stress conditions and developmental stages. By modulating these phytohormones, NO effectively directs plant responses to a spectrum of biotic and abiotic stresses. This comprehensive review synthesizes current knowledge on highlights the essential role of NO in the regulation of hormonal networks and provides a comprehensive understanding of how S-nitrosylation facilitates plant adaptation and enhances stress resilience.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70180"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70180","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nitric oxide (NO) is integral to modulating a wide array of physiological processes in plants, chiefly through its interactions with phytohormones. This review explores the complex dynamics between NO with four principal phytohormones: abscisic acid (ABA), salicylic acid (SA), auxin, and jasmonic acid (JA). The primary focus is on NO-mediated reversible redox-based modifications with a specific emphasis on S-nitrosylation. The impact of NO-induced S-nitrosylation is profound as it regulates crucial proteins involved in hormone signaling pathways, thereby influencing their synthesis, stability, and functional activity. The review elucidates how NO-mediated S-nitrosylation orchestrates the activities of ABA, SA, auxin, and JA under varying stress conditions and developmental stages. By modulating these phytohormones, NO effectively directs plant responses to a spectrum of biotic and abiotic stresses. This comprehensive review synthesizes current knowledge on highlights the essential role of NO in the regulation of hormonal networks and provides a comprehensive understanding of how S-nitrosylation facilitates plant adaptation and enhances stress resilience.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.