Polarization-multiplexing metafiber for dual-mode bright-field and dark-field microscopy.

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-04-01 DOI:10.1364/OL.551939
Zilei Liu, Yingbo Li, Xiaoyi Zhang, Siqi Li, Guoxi Wang, Wenfu Zhang
{"title":"Polarization-multiplexing metafiber for dual-mode bright-field and dark-field microscopy.","authors":"Zilei Liu, Yingbo Li, Xiaoyi Zhang, Siqi Li, Guoxi Wang, Wenfu Zhang","doi":"10.1364/OL.551939","DOIUrl":null,"url":null,"abstract":"<p><p>Bright-field and dark-field microscopy are typically used together as complementary techniques to provide comprehensive information about biological specimens with different optical absorption properties. However, switching between these two modes usually involves replacing several bulk optical components, which inevitably increases system complexity, introduces alignment challenges, and results in longer switching times. Herein, we propose a new, to the best of our knowledge, polarization-multiplexing metafiber device for dual-mode bright-field and dark-field microscopy. Utilizing a polarization-multiplexing metalens, two tailored beams (i.e., Gaussian and OAM beam) can be generated, simply by changing the handedness of the incident circularly polarized light. By integrating such metalens onto the tip of a large-mode-area photonic crystal fiber, we experimentally demonstrated that this compact and flexible metafiber can realize the dual-mode bright-field and dark-field microscopy using raspberry trichomes and pine stem, without the need to replace any optical components. The ultra-compact and flexibility features of the proposed metafiber-based dual-mode microscopy pave the way for promising applications in portable and <i>in vivo</i> biological imaging.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2163-2166"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.551939","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bright-field and dark-field microscopy are typically used together as complementary techniques to provide comprehensive information about biological specimens with different optical absorption properties. However, switching between these two modes usually involves replacing several bulk optical components, which inevitably increases system complexity, introduces alignment challenges, and results in longer switching times. Herein, we propose a new, to the best of our knowledge, polarization-multiplexing metafiber device for dual-mode bright-field and dark-field microscopy. Utilizing a polarization-multiplexing metalens, two tailored beams (i.e., Gaussian and OAM beam) can be generated, simply by changing the handedness of the incident circularly polarized light. By integrating such metalens onto the tip of a large-mode-area photonic crystal fiber, we experimentally demonstrated that this compact and flexible metafiber can realize the dual-mode bright-field and dark-field microscopy using raspberry trichomes and pine stem, without the need to replace any optical components. The ultra-compact and flexibility features of the proposed metafiber-based dual-mode microscopy pave the way for promising applications in portable and in vivo biological imaging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信