{"title":"Optical identification of marine floating debris from Sentinel-2 MSI imagery using radiation signal difference.","authors":"XiaoBo Zhu, YingCheng Lu, YanLong Chen, FuTao Wang, ChangYong Dou, WeiMin Ju","doi":"10.1364/OL.554994","DOIUrl":null,"url":null,"abstract":"<p><p>A spaceborne optical technique for marine floating debris is developed to detect, discriminate, and quantify such debris, especially that with weak optical signals. The technique uses only the top-of-atmosphere (TOA) signal based on the difference radiative transfer (DRT). DRT unveils diverse optical signals by referencing those within the neighborhood. Using DRT of either simulated signals or Sentinel-2 Multispectral Instrument (MSI) data, target types can be confirmed between the two and pinpointed on a normalized type line. The line, mostly, indicates normalized values of <0.2 for waters, 0.2-0.6 for debris, and >0.8 for algae. The classification limit for MSI is a sub-pixel fraction of 3%; above which, the boundary between debris and algae is distinct, being separated by >three standard deviations. This automated methodology unleashed TOA imagery on data cloud platforms such as Google Earth Engine (GEE) and promoted monitoring after coastal disasters, such as debris dumping and algae blooms.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2330-2333"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.554994","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A spaceborne optical technique for marine floating debris is developed to detect, discriminate, and quantify such debris, especially that with weak optical signals. The technique uses only the top-of-atmosphere (TOA) signal based on the difference radiative transfer (DRT). DRT unveils diverse optical signals by referencing those within the neighborhood. Using DRT of either simulated signals or Sentinel-2 Multispectral Instrument (MSI) data, target types can be confirmed between the two and pinpointed on a normalized type line. The line, mostly, indicates normalized values of <0.2 for waters, 0.2-0.6 for debris, and >0.8 for algae. The classification limit for MSI is a sub-pixel fraction of 3%; above which, the boundary between debris and algae is distinct, being separated by >three standard deviations. This automated methodology unleashed TOA imagery on data cloud platforms such as Google Earth Engine (GEE) and promoted monitoring after coastal disasters, such as debris dumping and algae blooms.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.