Xiaohong Li, Zhiqiang Qi, Hongyu Tan, Yang Liu, Lu Ding, Shaolin Ke
{"title":"On-chip broadband power splitters via non-Hermitian subspaces.","authors":"Xiaohong Li, Zhiqiang Qi, Hongyu Tan, Yang Liu, Lu Ding, Shaolin Ke","doi":"10.1364/OL.559011","DOIUrl":null,"url":null,"abstract":"<p><p>We propose and demonstrate a broadband 3-dB power splitter based on a non-Hermitian triplet waveguide fabricated on a silicon-on-insulator (SOI) platform. By exploiting mirror symmetry, we show that the triplet can be decoupled into two virtual subspaces: a Hermitian subspace featuring a lossless zero mode and a non-Hermitian subspace supporting lossy modes. The zero mode, with its intensity equally distributed between the outer two waveguides, plays a crucial role in achieving broadband performance, effectively suppressing mode competition and maintaining stable splitting against dimensional errors. Experimentally, the 1-dB operational bandwidth of the splitter is confirmed to exceed 70 nm, ranging from 1480 nm to 1550 nm. Furthermore, this approach can be directly extended to any 1×<i>n</i> power splitter, providing a scalable and robust solution for photonic integration.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 7","pages":"2473-2476"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.559011","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose and demonstrate a broadband 3-dB power splitter based on a non-Hermitian triplet waveguide fabricated on a silicon-on-insulator (SOI) platform. By exploiting mirror symmetry, we show that the triplet can be decoupled into two virtual subspaces: a Hermitian subspace featuring a lossless zero mode and a non-Hermitian subspace supporting lossy modes. The zero mode, with its intensity equally distributed between the outer two waveguides, plays a crucial role in achieving broadband performance, effectively suppressing mode competition and maintaining stable splitting against dimensional errors. Experimentally, the 1-dB operational bandwidth of the splitter is confirmed to exceed 70 nm, ranging from 1480 nm to 1550 nm. Furthermore, this approach can be directly extended to any 1×n power splitter, providing a scalable and robust solution for photonic integration.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.